Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -8,16 +8,13 @@ import time
|
|
8 |
import psutil
|
9 |
import optuna
|
10 |
import ast
|
11 |
-
import shap
|
12 |
-
import lime
|
13 |
-
import lime.lime_tabular
|
14 |
import pandas as pd
|
15 |
-
import numpy as np
|
16 |
-
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
17 |
from sklearn.model_selection import train_test_split
|
18 |
from sklearn.ensemble import RandomForestClassifier
|
19 |
-
from sklearn.
|
20 |
-
|
|
|
|
|
21 |
import matplotlib.pyplot as plt
|
22 |
|
23 |
# Authenticate Hugging Face
|
@@ -27,23 +24,39 @@ login(token=hf_token, add_to_git_credential=True)
|
|
27 |
# Initialize Model
|
28 |
model = HfApiModel("mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def format_observations(observations):
|
31 |
-
if not isinstance(observations, dict):
|
32 |
-
return f"<pre>{str(observations)}</pre>"
|
33 |
-
|
34 |
return '\n'.join([
|
35 |
f"""
|
36 |
<div style="margin: 15px 0; padding: 15px; background: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
37 |
<h3 style="margin: 0 0 10px 0; color: #4A708B;">{key.replace('_', ' ').title()}</h3>
|
38 |
<pre style="margin: 0; padding: 10px; background: #f8f9fa; border-radius: 4px;">{value}</pre>
|
39 |
</div>
|
40 |
-
""" for key, value in observations.items()
|
41 |
])
|
42 |
|
43 |
def format_insights(insights, visuals):
|
44 |
-
if not isinstance(insights, dict):
|
45 |
-
return f"<pre>{str(insights)}</pre>"
|
46 |
-
|
47 |
return '\n'.join([
|
48 |
f"""
|
49 |
<div style="margin: 20px 0; padding: 20px; background: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
@@ -56,214 +69,7 @@ def format_insights(insights, visuals):
|
|
56 |
""" for idx, (key, insight) in enumerate(insights.items())
|
57 |
])
|
58 |
|
59 |
-
def
|
60 |
-
try:
|
61 |
-
# Ensure we have a dictionary to work with
|
62 |
-
if isinstance(raw_output, str):
|
63 |
-
try:
|
64 |
-
analysis_dict = ast.literal_eval(raw_output)
|
65 |
-
except:
|
66 |
-
analysis_dict = {'observations': {'raw_output': raw_output}, 'insights': {}}
|
67 |
-
elif isinstance(raw_output, dict):
|
68 |
-
analysis_dict = raw_output
|
69 |
-
else:
|
70 |
-
analysis_dict = {'observations': {'raw_output': str(raw_output)}, 'insights': {}}
|
71 |
-
|
72 |
-
# Metrics section
|
73 |
-
metrics_section = ""
|
74 |
-
if metrics:
|
75 |
-
metrics_section = f"""
|
76 |
-
<div style="margin-top: 25px; background: #f8f9fa; padding: 20px; border-radius: 8px;">
|
77 |
-
<h2 style="color: #2B547E;">📈 Model Performance Metrics</h2>
|
78 |
-
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px;">
|
79 |
-
<div style="background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
80 |
-
<h3 style="margin: 0 0 10px 0; color: #4A708B;">Accuracy</h3>
|
81 |
-
<p style="font-size: 24px; font-weight: bold; margin: 0;">{metrics.get('accuracy', 0):.2f}</p>
|
82 |
-
</div>
|
83 |
-
<div style="background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
84 |
-
<h3 style="margin: 0 0 10px 0; color: #4A708B;">Precision</h3>
|
85 |
-
<p style="font-size: 24px; font-weight: bold; margin: 0;">{metrics.get('precision', 0):.2f}</p>
|
86 |
-
</div>
|
87 |
-
<div style="background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
88 |
-
<h3 style="margin: 0 0 10px 0; color: #4A708B;">Recall</h3>
|
89 |
-
<p style="font-size: 24px; font-weight: bold; margin: 0;">{metrics.get('recall', 0):.2f}</p>
|
90 |
-
</div>
|
91 |
-
<div style="background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
92 |
-
<h3 style="margin: 0 0 10px 0; color: #4A708B;">F1 Score</h3>
|
93 |
-
<p style="font-size: 24px; font-weight: bold; margin: 0;">{metrics.get('f1', 0):.2f}</p>
|
94 |
-
</div>
|
95 |
-
</div>
|
96 |
-
</div>
|
97 |
-
"""
|
98 |
-
|
99 |
-
# Hyperparameters section
|
100 |
-
hyperparams_section = ""
|
101 |
-
if hyperparams:
|
102 |
-
hyperparams_items = ''.join([
|
103 |
-
f"""
|
104 |
-
<div style="background: white; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
105 |
-
<h3 style="margin: 0 0 10px 0; color: #4A708B;">{key.replace('_', ' ').title()}</h3>
|
106 |
-
<p style="font-size: 18px; margin: 0;">{value}</p>
|
107 |
-
</div>
|
108 |
-
""" for key, value in hyperparams.items()
|
109 |
-
])
|
110 |
-
|
111 |
-
hyperparams_section = f"""
|
112 |
-
<div style="margin-top: 25px; background: #f8f9fa; padding: 20px; border-radius: 8px;">
|
113 |
-
<h2 style="color: #2B547E;">⚙️ Model Hyperparameters</h2>
|
114 |
-
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px;">
|
115 |
-
{hyperparams_items}
|
116 |
-
</div>
|
117 |
-
</div>
|
118 |
-
"""
|
119 |
-
|
120 |
-
# Explainability section
|
121 |
-
explainability_section = ""
|
122 |
-
if explainability_plots:
|
123 |
-
explainability_section = f"""
|
124 |
-
<div style="margin-top: 25px; background: #f8f9fa; padding: 20px; border-radius: 8px;">
|
125 |
-
<h2 style="color: #2B547E;">🔍 Model Explainability</h2>
|
126 |
-
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 15px;">
|
127 |
-
{''.join([f'<img src="/file={plot}" style="max-width: 100%; height: auto; border-radius: 6px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">' for plot in explainability_plots])}
|
128 |
-
</div>
|
129 |
-
</div>
|
130 |
-
"""
|
131 |
-
|
132 |
-
# Observations section
|
133 |
-
observations_section = ""
|
134 |
-
if 'observations' in analysis_dict:
|
135 |
-
observations_section = f"""
|
136 |
-
<div style="margin-top: 25px; background: #f8f9fa; padding: 20px; border-radius: 8px;">
|
137 |
-
<h2 style="color: #2B547E;">🔍 Key Observations</h2>
|
138 |
-
{format_observations(analysis_dict['observations'])}
|
139 |
-
</div>
|
140 |
-
"""
|
141 |
-
|
142 |
-
# Insights section
|
143 |
-
insights_section = ""
|
144 |
-
if 'insights' in analysis_dict:
|
145 |
-
insights_section = f"""
|
146 |
-
<div style="margin-top: 30px;">
|
147 |
-
<h2 style="color: #2B547E;">💡 Insights & Visualizations</h2>
|
148 |
-
{format_insights(analysis_dict.get('insights', {}), visuals)}
|
149 |
-
</div>
|
150 |
-
"""
|
151 |
-
|
152 |
-
# Build the complete report
|
153 |
-
report = f"""
|
154 |
-
<div style="font-family: Arial, sans-serif; padding: 20px; color: #333;">
|
155 |
-
<h1 style="color: #2B547E; border-bottom: 2px solid #2B547E; padding-bottom: 10px;">📊 Data Analysis Report</h1>
|
156 |
-
{hyperparams_section}
|
157 |
-
{metrics_section}
|
158 |
-
{explainability_section}
|
159 |
-
{observations_section}
|
160 |
-
{insights_section}
|
161 |
-
</div>
|
162 |
-
"""
|
163 |
-
|
164 |
-
return report, visuals
|
165 |
-
|
166 |
-
except Exception as e:
|
167 |
-
error_report = f"""
|
168 |
-
<div style="font-family: Arial, sans-serif; padding: 20px; color: #333;">
|
169 |
-
<h1 style="color: #B22222;">⚠️ Error Generating Report</h1>
|
170 |
-
<p>An error occurred while generating the report:</p>
|
171 |
-
<pre style="background: #f8f9fa; padding: 10px; border-radius: 4px;">{str(e)}</pre>
|
172 |
-
<p>Raw output:</p>
|
173 |
-
<pre style="background: #f8f9fa; padding: 10px; border-radius: 4px;">{str(raw_output)}</pre>
|
174 |
-
</div>
|
175 |
-
"""
|
176 |
-
return error_report, visuals
|
177 |
-
|
178 |
-
def preprocess_data(df, feature_engineering=True):
|
179 |
-
"""Handle missing values, categorical encoding, and feature engineering"""
|
180 |
-
# Make a copy to avoid modifying the original
|
181 |
-
df = df.copy()
|
182 |
-
|
183 |
-
# Basic preprocessing - handle missing values
|
184 |
-
numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns
|
185 |
-
if len(numeric_cols) > 0:
|
186 |
-
imputer = SimpleImputer(strategy='median')
|
187 |
-
df[numeric_cols] = imputer.fit_transform(df[numeric_cols])
|
188 |
-
|
189 |
-
# Convert categorical variables if any
|
190 |
-
categorical_cols = df.select_dtypes(include=['object']).columns
|
191 |
-
for col in categorical_cols:
|
192 |
-
if len(df[col].unique()) <= 10: # One-hot encode if few categories
|
193 |
-
df = pd.concat([df, pd.get_dummies(df[col], prefix=col)], axis=1)
|
194 |
-
df = df.drop(col, axis=1)
|
195 |
-
else: # Otherwise just drop (or could use target encoding)
|
196 |
-
df = df.drop(col, axis=1)
|
197 |
-
|
198 |
-
# Feature engineering
|
199 |
-
if feature_engineering and len(numeric_cols) > 0:
|
200 |
-
# Create polynomial features for numerical columns
|
201 |
-
poly = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)
|
202 |
-
poly_features = poly.fit_transform(df[numeric_cols])
|
203 |
-
poly_cols = [f"poly_{i}" for i in range(poly_features.shape[1])]
|
204 |
-
poly_df = pd.DataFrame(poly_features, columns=poly_cols)
|
205 |
-
df = pd.concat([df, poly_df], axis=1)
|
206 |
-
|
207 |
-
return df
|
208 |
-
|
209 |
-
def evaluate_model(X, y, model, test_size=0.2):
|
210 |
-
"""Evaluate model performance with various metrics"""
|
211 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)
|
212 |
-
|
213 |
-
# Standardize features
|
214 |
-
scaler = StandardScaler()
|
215 |
-
X_train = scaler.fit_transform(X_train)
|
216 |
-
X_test = scaler.transform(X_test)
|
217 |
-
|
218 |
-
model.fit(X_train, y_train)
|
219 |
-
y_pred = model.predict(X_test)
|
220 |
-
|
221 |
-
return {
|
222 |
-
'accuracy': accuracy_score(y_test, y_pred),
|
223 |
-
'precision': precision_score(y_test, y_pred, average='weighted'),
|
224 |
-
'recall': recall_score(y_test, y_pred, average='weighted'),
|
225 |
-
'f1': f1_score(y_test, y_pred, average='weighted')
|
226 |
-
}
|
227 |
-
|
228 |
-
def generate_explainability_plots(X, model, feature_names, output_dir='./figures'):
|
229 |
-
"""Generate SHAP and LIME explainability plots"""
|
230 |
-
os.makedirs(output_dir, exist_ok=True)
|
231 |
-
plot_paths = []
|
232 |
-
|
233 |
-
try:
|
234 |
-
# SHAP Analysis
|
235 |
-
explainer = shap.Explainer(model)
|
236 |
-
shap_values = explainer(X[:100]) # Use first 100 samples for speed
|
237 |
-
|
238 |
-
plt.figure()
|
239 |
-
shap.summary_plot(shap_values, X[:100], feature_names=feature_names, show=False)
|
240 |
-
shap_path = os.path.join(output_dir, 'shap_summary.png')
|
241 |
-
plt.savefig(shap_path, bbox_inches='tight')
|
242 |
-
plt.close()
|
243 |
-
plot_paths.append(shap_path)
|
244 |
-
|
245 |
-
# LIME Analysis
|
246 |
-
explainer = lime.lime_tabular.LimeTabularExplainer(
|
247 |
-
X,
|
248 |
-
feature_names=feature_names,
|
249 |
-
class_names=[str(x) for x in np.unique(model.classes_)],
|
250 |
-
verbose=False,
|
251 |
-
mode='classification'
|
252 |
-
)
|
253 |
-
|
254 |
-
# Explain a random instance
|
255 |
-
exp = explainer.explain_instance(X[0], model.predict_proba, num_features=5)
|
256 |
-
lime_path = os.path.join(output_dir, 'lime_explanation.png')
|
257 |
-
exp.as_pyplot_figure().savefig(lime_path, bbox_inches='tight')
|
258 |
-
plt.close()
|
259 |
-
plot_paths.append(lime_path)
|
260 |
-
|
261 |
-
except Exception as e:
|
262 |
-
print(f"Explainability failed: {str(e)}")
|
263 |
-
|
264 |
-
return plot_paths
|
265 |
-
|
266 |
-
def analyze_data(csv_file, additional_notes="", perform_ml=True):
|
267 |
start_time = time.time()
|
268 |
process = psutil.Process(os.getpid())
|
269 |
initial_memory = process.memory_info().rss / 1024 ** 2
|
@@ -276,35 +82,105 @@ def analyze_data(csv_file, additional_notes="", perform_ml=True):
|
|
276 |
run = wandb.init(project="huggingface-data-analysis", config={
|
277 |
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
278 |
"additional_notes": additional_notes,
|
279 |
-
"source_file": csv_file.name if csv_file else None
|
280 |
-
"perform_ml": perform_ml
|
281 |
})
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import psutil
|
9 |
import optuna
|
10 |
import ast
|
|
|
|
|
|
|
11 |
import pandas as pd
|
|
|
|
|
12 |
from sklearn.model_selection import train_test_split
|
13 |
from sklearn.ensemble import RandomForestClassifier
|
14 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
15 |
+
import shap
|
16 |
+
import lime
|
17 |
+
import lime.lime_tabular
|
18 |
import matplotlib.pyplot as plt
|
19 |
|
20 |
# Authenticate Hugging Face
|
|
|
24 |
# Initialize Model
|
25 |
model = HfApiModel("mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token)
|
26 |
|
27 |
+
def format_analysis_report(raw_output, visuals):
|
28 |
+
try:
|
29 |
+
analysis_dict = raw_output if isinstance(raw_output, dict) else ast.literal_eval(str(raw_output))
|
30 |
+
|
31 |
+
report = f"""
|
32 |
+
<div style="font-family: Arial, sans-serif; padding: 20px; color: #333;">
|
33 |
+
<h1 style="color: #2B547E; border-bottom: 2px solid #2B547E; padding-bottom: 10px;">📊 Data Analysis Report</h1>
|
34 |
+
<div style="margin-top: 25px; background: #f8f9fa; padding: 20px; border-radius: 8px;">
|
35 |
+
<h2 style="color: #2B547E;">🔍 Key Observations</h2>
|
36 |
+
{format_observations(analysis_dict.get('observations', {}))}
|
37 |
+
</div>
|
38 |
+
<div style="margin-top: 30px;">
|
39 |
+
<h2 style="color: #2B547E;">💡 Insights & Visualizations</h2>
|
40 |
+
{format_insights(analysis_dict.get('insights', {}), visuals)}
|
41 |
+
</div>
|
42 |
+
</div>
|
43 |
+
"""
|
44 |
+
return report, visuals
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error formatting analysis report: {e}")
|
47 |
+
return str(raw_output), visuals
|
48 |
+
|
49 |
def format_observations(observations):
|
|
|
|
|
|
|
50 |
return '\n'.join([
|
51 |
f"""
|
52 |
<div style="margin: 15px 0; padding: 15px; background: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
53 |
<h3 style="margin: 0 0 10px 0; color: #4A708B;">{key.replace('_', ' ').title()}</h3>
|
54 |
<pre style="margin: 0; padding: 10px; background: #f8f9fa; border-radius: 4px;">{value}</pre>
|
55 |
</div>
|
56 |
+
""" for key, value in observations.items() if 'proportions' in key
|
57 |
])
|
58 |
|
59 |
def format_insights(insights, visuals):
|
|
|
|
|
|
|
60 |
return '\n'.join([
|
61 |
f"""
|
62 |
<div style="margin: 20px 0; padding: 20px; background: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
|
|
69 |
""" for idx, (key, insight) in enumerate(insights.items())
|
70 |
])
|
71 |
|
72 |
+
def analyze_data(csv_file, additional_notes=""):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
start_time = time.time()
|
74 |
process = psutil.Process(os.getpid())
|
75 |
initial_memory = process.memory_info().rss / 1024 ** 2
|
|
|
82 |
run = wandb.init(project="huggingface-data-analysis", config={
|
83 |
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
84 |
"additional_notes": additional_notes,
|
85 |
+
"source_file": csv_file.name if csv_file else None
|
|
|
86 |
})
|
87 |
|
88 |
+
agent = CodeAgent(tools=[], model=model, additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "sklearn"])
|
89 |
+
analysis_result = agent.run("""
|
90 |
+
You are an expert data analyst. Perform comprehensive analysis including:
|
91 |
+
1. Basic statistics and data quality checks
|
92 |
+
2. 3 insightful analytical questions about relationships in the data
|
93 |
+
3. Visualization of key patterns and correlations
|
94 |
+
4. Actionable real-world insights derived from findings
|
95 |
+
Generate publication-quality visualizations and save to './figures/'
|
96 |
+
""", additional_args={"additional_notes": additional_notes, "source_file": csv_file})
|
97 |
|
98 |
+
execution_time = time.time() - start_time
|
99 |
+
final_memory = process.memory_info().rss / 1024 ** 2
|
100 |
+
memory_usage = final_memory - initial_memory
|
101 |
+
wandb.log({"execution_time_sec": execution_time, "memory_usage_mb": memory_usage})
|
102 |
+
|
103 |
+
visuals = [os.path.join('./figures', f) for f in os.listdir('./figures') if f.endswith(('.png', '.jpg', '.jpeg'))]
|
104 |
+
for viz in visuals:
|
105 |
+
wandb.log({os.path.basename(viz): wandb.Image(viz)})
|
106 |
+
|
107 |
+
run.finish()
|
108 |
+
return format_analysis_report(analysis_result, visuals)
|
109 |
+
|
110 |
+
def objective(trial, X_train, y_train, X_test, y_test):
|
111 |
+
n_estimators = trial.suggest_int("n_estimators", 50, 200)
|
112 |
+
max_depth = trial.suggest_int("max_depth", 3, 10)
|
113 |
+
|
114 |
+
model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
|
115 |
+
model.fit(X_train, y_train)
|
116 |
+
predictions = model.predict(X_test)
|
117 |
+
|
118 |
+
accuracy = accuracy_score(y_test, predictions)
|
119 |
+
return accuracy
|
120 |
+
|
121 |
+
def tune_hyperparameters(csv_file, n_trials: int):
|
122 |
+
df = pd.read_csv(csv_file)
|
123 |
+
y = df.iloc[:, -1]
|
124 |
+
X = df.iloc[:, :-1]
|
125 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
126 |
+
|
127 |
+
study = optuna.create_study(direction="maximize")
|
128 |
+
objective_func = lambda trial: objective(trial, X_train, y_train, X_test, y_test)
|
129 |
+
study.optimize(objective_func, n_trials=n_trials)
|
130 |
+
|
131 |
+
best_params = study.best_params
|
132 |
+
best_value = study.best_value
|
133 |
+
|
134 |
+
model = RandomForestClassifier(**best_params, random_state=42)
|
135 |
+
model.fit(X_train, y_train)
|
136 |
+
predictions = model.predict(X_test)
|
137 |
+
|
138 |
+
accuracy = accuracy_score(y_test, predictions)
|
139 |
+
precision = precision_score(y_test, predictions, average='weighted', zero_division=0)
|
140 |
+
recall = recall_score(y_test, predictions, average='weighted', zero_division=0)
|
141 |
+
f1 = f1_score(y_test, predictions, average='weighted', zero_division=0)
|
142 |
+
|
143 |
+
wandb.log({
|
144 |
+
"best_params": best_params,
|
145 |
+
"accuracy": accuracy,
|
146 |
+
"precision": precision,
|
147 |
+
"recall": recall,
|
148 |
+
"f1": f1,
|
149 |
+
})
|
150 |
+
|
151 |
+
shap_explainer = shap.TreeExplainer(model)
|
152 |
+
shap_values = shap_explainer.shap_values(X_test)
|
153 |
+
shap.summary_plot(shap_values, X_test, show=False)
|
154 |
+
shap_fig_path = "./figures/shap_summary.png"
|
155 |
+
plt.savefig(shap_fig_path)
|
156 |
+
wandb.log({"shap_summary": wandb.Image(shap_fig_path)})
|
157 |
+
plt.clf() #Clear figure to avoid plot overlap.
|
158 |
+
|
159 |
+
lime_explainer = lime.lime_tabular.LimeTabularExplainer(X_train.values, feature_names=X_train.columns, class_names=['target'], mode='classification')
|
160 |
+
lime_explanation = lime_explainer.explain_instance(X_test.iloc[0].values, model.predict_proba)
|
161 |
+
lime_fig = lime_explanation.as_pyplot_figure()
|
162 |
+
lime_fig_path = "./figures/lime_explanation.png"
|
163 |
+
lime_fig.savefig(lime_fig_path)
|
164 |
+
wandb.log({"lime_explanation": wandb.Image(lime_fig_path)})
|
165 |
+
plt.clf() #Clear figure to avoid plot overlap.
|
166 |
+
|
167 |
+
return f"Best Hyperparameters: {best_params}<br>Accuracy: {accuracy}<br>Precision: {precision}<br>Recall: {recall}<br>F1-score: {f1}"
|
168 |
+
|
169 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
170 |
+
gr.Markdown("## 📊 AI Data Analysis Agent with Hyperparameter Optimization")
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column():
|
173 |
+
file_input = gr.File(label="Upload CSV Dataset", type="filepath")
|
174 |
+
notes_input = gr.Textbox(label="Dataset Notes (Optional)", lines=3)
|
175 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
176 |
+
optuna_trials = gr.Number(label="Number of Hyperparameter Tuning Trials", value=10)
|
177 |
+
tune_btn = gr.Button("Optimize Hyperparameters", variant="secondary")
|
178 |
+
with gr.Column():
|
179 |
+
analysis_output = gr.Markdown("### Analysis results will appear here...")
|
180 |
+
optuna_output = gr.HTML(label="Hyperparameter Tuning Results")
|
181 |
+
gallery = gr.Gallery(label="Data Visualizations", columns=2)
|
182 |
+
|
183 |
+
analyze_btn.click(fn=analyze_data, inputs=[file_input, notes_input], outputs=[analysis_output, gallery])
|
184 |
+
tune_btn.click(fn=tune_hyperparameters, inputs=[file_input, optuna_trials], outputs=[optuna_output])
|
185 |
+
|
186 |
+
demo.launch(debug=True)
|