File size: 13,952 Bytes
e52682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d668e
e52682b
b9d668e
e52682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d668e
e52682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
004fa99
e52682b
 
 
004fa99
e52682b
 
 
 
 
 
 
 
 
004fa99
e52682b
 
 
a5deedf
e52682b
 
 
 
 
 
 
 
 
b9d668e
004fa99
e52682b
 
b9d668e
004fa99
e52682b
 
 
 
 
 
 
 
 
 
b9d668e
 
e52682b
 
 
 
 
 
b9d668e
 
e52682b
 
 
 
b9d668e
e52682b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import spaces

import os
import re

import torch
import gradio as gr

import sys
sys.path.append('./videollama2')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init


title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
    <img src="https://s2.loli.net/2024/06/03/D3NeXHWy5az9tmT.png" alt="VideoLLaMA 2 πŸ”₯πŸš€πŸ”₯" style="max-width: 120px; height: auto;">
  </a>
  <div>
    <h1 >VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</h1>
    <h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or πŸ’– on this space.</h5>
  </div>
</div>


<div align="center">
    <div style="display:flex; gap: 0.25rem; margin-top: 10px;" align="center">
        <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2"><img src='https://img.shields.io/badge/Github-VideoLLaMA2-9C276A'></a>
        <a href="https://arxiv.org/pdf/2406.07476.pdf"><img src="https://img.shields.io/badge/Arxiv-2406.07476-AD1C18"></a>
        <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2/stargazers"><img src="https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA2.svg?style=social"></a>
    </div>
</div>
""")


block_css = """
#buttons button {
    min-width: min(120px,100%);
    color: #9C276A
}
"""


tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")


learn_more_markdown = ("""
### License
This project is released under the Apache 2.0 license as found in the LICENSE file. The service is a research preview intended for non-commercial use ONLY, subject to the model Licenses of LLaMA and Mistral, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Please get in touch with us if you find any potential violations.
""")


plum_color = gr.themes.colors.Color(
    name='plum',
    c50='#F8E4EF',
    c100='#E9D0DE',
    c200='#DABCCD',
    c300='#CBA8BC',
    c400='#BC94AB',
    c500='#AD809A',
    c600='#9E6C89',
    c700='#8F5878',
    c800='#804467',
    c900='#713056',
    c950='#662647',
)


class Chat:

    def __init__(self, model_path, load_8bit=False, load_4bit=False):
        disable_torch_init()

        self.model, self.processor, self.tokenizer = model_init(model_path, load_8bit=load_8bit, load_4bit=load_4bit)

    @spaces.GPU(duration=120)
    @torch.inference_mode()
    def generate(self, data: list, message, temperature, top_p, max_output_tokens):
        # TODO: support multiple turns of conversation.
        assert len(data) == 1

        tensor, modal = data[0]
        response = mm_infer(tensor, message, self.model, self.tokenizer, modal=modal.strip('<>'), 
            do_sample=True if temperature > 0.0 else False,
            temperature=temperature,
            top_p=top_p,
            max_new_tokens=max_output_tokens)

        return response


@spaces.GPU(duration=120)
def generate(video, audio, message, chatbot, va_tag, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
    data = []
    image = None

    processor = handler.processor
    try:
        if image is not None:
            data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
        elif video is not None:
            video_audio = processor['video'](video, va=va_tag=="Audio Vision")
            if va_tag=="Audio Vision":
                for k,v in video_audio.items():
                    video_audio[k] = v.to(handler.model.device, dtype=dtype)
            else:
                video_audio = video_audio.to(handler.model.device, dtype=dtype)
            data.append((video_audio, '<video>'))
        elif audio is not None:
            data.append((processor['audio'](audio).to(handler.model.device, dtype=dtype), '<audio>'))
        elif image is None and video is None:
            data.append((None, '<text>'))
        else:
            raise NotImplementedError("Not support image and video at the same time")
    except Exception as e:
        traceback.print_exc()
        return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot

    assert len(message) % 2 == 0, "The message should be a pair of user and system message."

    show_images = ""
    if image is not None:
        show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
    if video is not None:
        show_images += f'<video controls playsinline width="500" style="display: inline-block;"  src="./file={video}"></video>'
    if audio is not None:
        show_images += f'<audio controls style="display: inline-block;" src="./file={audio}"></audio>'

    one_turn_chat = [textbox_in, None]

    # 1. first run case
    if len(chatbot) == 0:
        one_turn_chat[0] += "\n" + show_images
    # 2. not first run case
    else:
        previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[0][0])
        previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;"  src="./file=(.+?)"', chatbot[0][0])
        previous_audio = re.findall(r'<audio controls style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
        if len(previous_image) > 0:
            previous_image = previous_image[0]
            # 2.1 new image append or pure text input will start a new conversation
            if image is not None and os.path.basename(previous_image) != os.path.basename(image):
                message.clear()
                one_turn_chat[0] += "\n" + show_images
        elif len(previous_video) > 0:
            previous_video = previous_video[0]
            # 2.2 new video append or pure text input will start a new conversation
            if video is not None and os.path.basename(previous_video) != os.path.basename(video):
                message.clear()
                one_turn_chat[0] += "\n" + show_images
        elif len(previous_audio) > 0:
            previous_audio = previous_audio[0]
            # 2.3 new audio append or pure text input will start a new conversation
            if audio is not None and os.path.basename(previous_audio) != os.path.basename(video):
                message.clear()
                one_turn_chat[0] += "\n" + show_images

    message.append({'role': 'user', 'content': textbox_in})

    if va_tag == "Vision Only":
        audio_tower = handler.model.model.audio_tower
        handler.model.model.audio_tower = None
    elif va_tag == "Audio Only":
        vision_tower = handler.model.model.vision_tower
        handler.model.model.vision_tower = None

    text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)

    if va_tag == "Vision Only":
        handler.model.model.audio_tower = audio_tower
    elif va_tag == "Audio Only":
        handler.model.model.vision_tower = vision_tower

    message.append({'role': 'assistant', 'content': text_en_out})

    one_turn_chat[1] = text_en_out
    chatbot.append(one_turn_chat)

    return gr.update(value=video, interactive=True), gr.update(value=audio, interactive=True), message, chatbot


def regenerate(message, chatbot):
    message.pop(-1), message.pop(-1)
    chatbot.pop(-1)
    return message, chatbot


def clear_history(message, chatbot):
    message.clear(), chatbot.clear()
    return (gr.update(value=None, interactive=True),
            gr.update(value=None, interactive=True),
            gr.update(value=None, interactive=True),
            message, chatbot,
            gr.update(value=None, interactive=True))


# BUG of Zero Environment
# 1. The environment is fixed to torch>=2.0,<=2.2, gradio>=4.x.x
# 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
# 3. The function can't return tensor or other cuda objects.

model_path = 'DAMO-NLP-SG/VideoLLaMA2.1-7B-AV'

handler = Chat(model_path, load_8bit=False, load_4bit=False)

textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)

theme = gr.themes.Default(primary_hue=plum_color)
# theme.update_color("primary", plum_color.c500)
theme.set(slider_color="#9C276A")
theme.set(block_title_text_color="#9C276A")
theme.set(block_label_text_color="#9C276A")
theme.set(button_primary_text_color="#9C276A")
# theme.set(button_secondary_text_color="*neutral_800")


with gr.Blocks(title='VideoLLaMA 2 πŸ”₯πŸš€πŸ”₯', theme=theme, css=block_css) as demo:
    gr.Markdown(title_markdown)
    message = gr.State([])

    with gr.Row():
        with gr.Column(scale=3):
            video = gr.Video(label="Input Video")
            audio = gr.Audio(label="Input Audio", type="filepath")

            with gr.Accordion("Parameters", open=True) as parameter_row:
                # num_beams = gr.Slider(
                #     minimum=1,
                #     maximum=10,
                #     value=1,
                #     step=1,
                #     interactive=True,
                #     label="beam search numbers",
                # )

                va_tag = gr.Radio(choices=["Audio Vision", "Vision Only", "Audio Only"], value="Audio Vision", label="Select one")

                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.2,
                    step=0.1,
                    interactive=True,
                    label="Temperature",
                )

                top_p = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.7,
                        step=0.1,
                        interactive=True,
                        label="Top P",
                )

                max_output_tokens = gr.Slider(
                    minimum=64,
                    maximum=1024,
                    value=512,
                    step=64,
                    interactive=True,
                    label="Max output tokens",
                )

        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="VideoLLaMA 2", bubble_full_width=True, height=750)
            with gr.Row():
                with gr.Column(scale=8):
                    textbox.render()
                with gr.Column(scale=1, min_width=50):
                    submit_btn = gr.Button(value="Send", variant="primary", interactive=True)
            with gr.Row(elem_id="buttons") as button_row:
                upvote_btn     = gr.Button(value="πŸ‘  Upvote", interactive=True)
                downvote_btn   = gr.Button(value="πŸ‘Ž  Downvote", interactive=True)
                # flag_btn     = gr.Button(value="⚠️  Flag", interactive=True)
                # stop_btn     = gr.Button(value="⏹️  Stop Generation", interactive=False)
                regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=True)
                clear_btn      = gr.Button(value="πŸ—‘οΈ  Clear history", interactive=True)

    with gr.Row():
        cur_dir = os.path.dirname(os.path.abspath(__file__))
        with gr.Column():
            gr.Examples(
                examples=[
                    [
                        f"{cur_dir}/examples/WBS4I.mp4",
                        "Please describe the video.",
                    ],
                    [
                        f"{cur_dir}/examples/sample_demo_1.mp4",
                        "Please describe the video.",
                    ],
                ],
                inputs=[video, textbox],
            )
        with gr.Column():
            gr.Examples(
                examples=[
                    [
                        f"{cur_dir}/examples/00000368.mp4",
                        "Please describe the video with audio information.",
                    ],
                    [
                        f"{cur_dir}/examples/00003491.mp4",
                        "Where is the loudest instrument?",
                    ],
                ],
                inputs=[video, textbox],
            )
        with gr.Column():
            # audio
            gr.Examples(
                examples=[
                    [
                        f"{cur_dir}/examples/bird-twitter-car.wav",
                        "Please describe the audio.",
                    ],
                    [
                        f"{cur_dir}/examples/door.of.bar.raining2.wav",
                        "Please describe the audio.",
                    ],
                ],
                inputs=[audio, textbox],
            )

    gr.Markdown(tos_markdown)
    gr.Markdown(learn_more_markdown)

    submit_btn.click(
        generate, 
        [video, audio, message, chatbot, va_tag, textbox, temperature, top_p, max_output_tokens],
        [video, audio, message, chatbot])

    regenerate_btn.click(
        regenerate, 
        [message, chatbot], 
        [message, chatbot]).then(
        generate, 
        [video, audio, message, chatbot, va_tag, textbox, temperature, top_p, max_output_tokens], 
        [video, audio, message, chatbot])

    clear_btn.click(
        clear_history, 
        [message, chatbot],
        [video, audio, message, chatbot, textbox])

demo.launch(share=False)