File size: 7,749 Bytes
2ccf6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from typing import Tuple
import numpy as np

import torch
from torch import nn, Tensor
from torch.nn import Module
import torch.nn.functional as F

from einops import rearrange, repeat

from beartype import beartype
from beartype.typing import Optional

def exists(val):
    return val is not None

class AlignerNet(Module):
    """alignment model https://arxiv.org/pdf/2108.10447.pdf """
    def __init__(
        self,
        dim_in=80,
        dim_hidden=512,
        attn_channels=80,
        temperature=0.0005,
    ):
        super().__init__()
        self.temperature = temperature

        self.key_layers = nn.ModuleList([
            nn.Conv1d(
                dim_hidden,
                dim_hidden * 2,
                kernel_size=3,
                padding=1,
                bias=True,
            ),
            nn.ReLU(inplace=True),
            nn.Conv1d(dim_hidden * 2, attn_channels, kernel_size=1, padding=0, bias=True)
        ])

        self.query_layers = nn.ModuleList([
            nn.Conv1d(
                dim_in,
                dim_in * 2,
                kernel_size=3,
                padding=1,
                bias=True,
            ),
            nn.ReLU(inplace=True),
            nn.Conv1d(dim_in * 2, dim_in, kernel_size=1, padding=0, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv1d(dim_in, attn_channels, kernel_size=1, padding=0, bias=True)
        ])

    @beartype
    def forward(
        self,
        queries: Tensor,
        keys: Tensor,
        mask: Optional[Tensor] = None
    ):
        key_out = keys
        for layer in self.key_layers:
            key_out = layer(key_out)

        query_out = queries
        for layer in self.query_layers:
            query_out = layer(query_out)

        key_out = rearrange(key_out, 'b c t -> b t c')
        query_out = rearrange(query_out, 'b c t -> b t c')

        attn_logp = torch.cdist(query_out, key_out)
        attn_logp = rearrange(attn_logp, 'b ... -> b 1 ...')

        if exists(mask):
            mask = rearrange(mask.bool(), '... c -> ... 1 c')
            attn_logp.data.masked_fill_(~mask, -torch.finfo(attn_logp.dtype).max)

        attn = attn_logp.softmax(dim = -1)
        return attn, attn_logp

def pad_tensor(input, pad, value=0):
    pad = [item for sublist in reversed(pad) for item in sublist]  # Flatten the tuple
    assert len(pad) // 2 == len(input.shape), 'Padding dimensions do not match input dimensions'
    return F.pad(input, pad, mode='constant', value=value)

def maximum_path(value, mask, const=None):
    device = value.device
    dtype = value.dtype
    if not exists(const):
        const = torch.tensor(float('-inf')).to(device)  # Patch for Sphinx complaint
    value = value * mask

    b, t_x, t_y = value.shape
    direction = torch.zeros(value.shape, dtype=torch.int64, device=device)
    v = torch.zeros((b, t_x), dtype=torch.float32, device=device)
    x_range = torch.arange(t_x, dtype=torch.float32, device=device).view(1, -1)

    for j in range(t_y):
        v0 = pad_tensor(v, ((0, 0), (1, 0)), value = const)[:, :-1]
        v1 = v
        max_mask = v1 >= v0
        v_max = torch.where(max_mask, v1, v0)
        direction[:, :, j] = max_mask

        index_mask = x_range <= j
        v = torch.where(index_mask.view(1,-1), v_max + value[:, :, j], const)

    direction = torch.where(mask.bool(), direction, 1)

    path = torch.zeros(value.shape, dtype=torch.float32, device=device)
    index = mask[:, :, 0].sum(1).long() - 1
    index_range = torch.arange(b, device=device)

    for j in reversed(range(t_y)):
        path[index_range, index, j] = 1
        index = index + direction[index_range, index, j] - 1

    path = path * mask.float()
    path = path.to(dtype=dtype)
    return path

class ForwardSumLoss(Module):
    def __init__(
        self,
        blank_logprob = -1
    ):
        super().__init__()
        self.blank_logprob = blank_logprob

        self.ctc_loss = torch.nn.CTCLoss(
            blank = 0,  # check this value
            zero_infinity = True
        )

    def forward(self, attn_logprob, key_lens, query_lens):
        device, blank_logprob  = attn_logprob.device, self.blank_logprob
        max_key_len = attn_logprob.size(-1)

        # Reorder input to [query_len, batch_size, key_len]
        attn_logprob = rearrange(attn_logprob, 'b 1 c t -> c b t')

        # Add blank label
        attn_logprob = F.pad(attn_logprob, (1, 0, 0, 0, 0, 0), value = blank_logprob)

        # Convert to log probabilities
        # Note: Mask out probs beyond key_len
        mask_value = -torch.finfo(attn_logprob.dtype).max
        attn_logprob.masked_fill_(torch.arange(max_key_len + 1, device=device, dtype=torch.long).view(1, 1, -1) > key_lens.view(1, -1, 1), mask_value)

        attn_logprob = attn_logprob.log_softmax(dim = -1)

        # Target sequences
        target_seqs = torch.arange(1, max_key_len + 1, device=device, dtype=torch.long)
        target_seqs = repeat(target_seqs, 'n -> b n', b = key_lens.numel())

        # Evaluate CTC loss
        cost = self.ctc_loss(attn_logprob, target_seqs, query_lens, key_lens)

        return cost

class BinLoss(Module):
    def forward(self, attn_hard, attn_logprob, key_lens):
        batch, device = attn_logprob.shape[0], attn_logprob.device
        max_key_len = attn_logprob.size(-1)

        # Reorder input to [query_len, batch_size, key_len]
        attn_logprob = rearrange(attn_logprob, 'b 1 c t -> c b t')
        attn_hard = rearrange(attn_hard, 'b t c -> c b t')

        mask_value = -torch.finfo(attn_logprob.dtype).max

        attn_logprob.masked_fill_(torch.arange(max_key_len, device=device, dtype=torch.long).view(1, 1, -1) > key_lens.view(1, -1, 1), mask_value)
        attn_logprob = attn_logprob.log_softmax(dim = -1)

        return (attn_hard * attn_logprob).sum() / batch

class Aligner(Module):
    def __init__(
        self,
        dim_in,
        dim_hidden,
        attn_channels=80,
        temperature=0.0005
    ):
        super().__init__()
        self.dim_in = dim_in
        self.dim_hidden = dim_hidden
        self.attn_channels = attn_channels
        self.temperature = temperature
        self.aligner = AlignerNet(
            dim_in = self.dim_in, 
            dim_hidden = self.dim_hidden,
            attn_channels = self.attn_channels,
            temperature = self.temperature
        )

    def forward(
        self,
        x,
        x_mask,
        y,
        y_mask
    ):
        alignment_soft, alignment_logprob = self.aligner(y, rearrange(x, 'b d t -> b t d'), x_mask)

        x_mask = rearrange(x_mask, '... i -> ... i 1')
        y_mask = rearrange(y_mask, '... j -> ... 1 j')
        attn_mask = x_mask * y_mask
        attn_mask = rearrange(attn_mask, 'b 1 i j -> b i j')

        alignment_soft = rearrange(alignment_soft, 'b 1 c t -> b t c')
        alignment_mask = maximum_path(alignment_soft, attn_mask)

        alignment_hard = torch.sum(alignment_mask, -1).int()
        return alignment_hard, alignment_soft, alignment_logprob, alignment_mask
    
if __name__ == '__main__':
    batch_size = 10
    seq_len_y = 200   # length of sequence y
    seq_len_x = 35
    feature_dim = 80  # feature dimension

    x = torch.randn(batch_size, 512, seq_len_x)
    x = x.transpose(1,2) #dim-1 is the channels for conv
    y = torch.randn(batch_size, seq_len_y, feature_dim)
    y = y.transpose(1,2) #dim-1 is the channels for conv
    
    # Create masks
    x_mask = torch.ones(batch_size, 1, seq_len_x)
    y_mask = torch.ones(batch_size, 1, seq_len_y)

    align = Aligner(dim_in = 80, dim_hidden=512, attn_channels=80)
    alignment_hard, alignment_soft, alignment_logprob, alignment_mas = align(x, x_mask, y, y_mask)