File size: 5,389 Bytes
2ccf6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from abc import ABC

import torch
import torch.nn.functional as F

from pflow.models.components.decoder import Decoder
from pflow.models.components.wn_pflow_decoder import DiffSingerNet
from pflow.models.components.vits_wn_decoder import VitsWNDecoder

from pflow.utils.pylogger import get_pylogger

log = get_pylogger(__name__)


class BASECFM(torch.nn.Module, ABC):
    def __init__(
        self,
        n_feats,
        cfm_params,
        n_spks=1,
        spk_emb_dim=128,
    ):
        super().__init__()
        self.n_feats = n_feats
        self.n_spks = n_spks
        self.spk_emb_dim = spk_emb_dim
        self.solver = cfm_params.solver
        if hasattr(cfm_params, "sigma_min"):
            self.sigma_min = cfm_params.sigma_min
        else:
            self.sigma_min = 1e-4

        self.estimator = None

    @torch.inference_mode()
    def forward(self, mu, mask, n_timesteps, temperature=1.0, cond=None, training=False, guidance_scale=0.0):
        """Forward diffusion

        Args:
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            n_timesteps (int): number of diffusion steps
            temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
            cond: Not used but kept for future purposes

        Returns:
            sample: generated mel-spectrogram
                shape: (batch_size, n_feats, mel_timesteps)
        """
        z = torch.randn_like(mu) * temperature
        t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
        return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, cond=cond, training=training, guidance_scale=guidance_scale)

    def solve_euler(self, x, t_span, mu, mask,  cond, training=False, guidance_scale=0.0):
        """
        Fixed euler solver for ODEs.
        Args:
            x (torch.Tensor): random noise
            t_span (torch.Tensor): n_timesteps interpolated
                shape: (n_timesteps + 1,)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            cond: Not used but kept for future purposes
        """
        t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]

        # I am storing this because I can later plot it by putting a debugger here and saving it to a file
        # Or in future might add like a return_all_steps flag
        sol = []
        steps = 1
        while steps <= len(t_span) - 1:
            dphi_dt = self.estimator(x, mask, mu, t, cond, training=training)
            if guidance_scale > 0.0:
                mu_avg = mu.mean(2, keepdims=True).expand_as(mu)
                dphi_avg = self.estimator(x, mask, mu_avg, t, cond, training=training)
                dphi_dt = dphi_dt + guidance_scale * (dphi_dt - dphi_avg)

            x = x + dt * dphi_dt
            t = t + dt
            sol.append(x)
            if steps < len(t_span) - 1:
                dt = t_span[steps + 1] - t
            steps += 1

        return sol[-1]
        
    def compute_loss(self, x1, mask, mu, cond=None, training=True, loss_mask=None):
        """Computes diffusion loss

        Args:
            x1 (torch.Tensor): Target
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): target mask
                shape: (batch_size, 1, mel_timesteps)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            spks (torch.Tensor, optional): speaker embedding. Defaults to None.
                shape: (batch_size, spk_emb_dim)

        Returns:
            loss: conditional flow matching loss
            y: conditional flow
                shape: (batch_size, n_feats, mel_timesteps)
        """
        b, _, t = mu.shape

        # random timestep
        t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
        # sample noise p(x_0)
        z = torch.randn_like(x1)
                
        y = (1 - (1 - self.sigma_min) * t) * z + t * x1
        u = x1 - (1 - self.sigma_min) * z
        # y = u * t + z
        estimator_out = self.estimator(y, mask, mu, t.squeeze(), training=training)

        if loss_mask is not None:
            mask = loss_mask
        loss = F.mse_loss(estimator_out*mask, u*mask, reduction="sum") / (
            torch.sum(mask) * u.shape[1]
        )
        return loss, y


class CFM(BASECFM):
    def __init__(self, in_channels, out_channel, cfm_params, decoder_params):
        super().__init__(
            n_feats=in_channels,
            cfm_params=cfm_params,
        )

        # Just change the architecture of the estimator here
        self.estimator = Decoder(in_channels=in_channels*2, out_channels=out_channel, **decoder_params)
        # self.estimator = DiffSingerNet(in_dims=in_channels, encoder_hidden=out_channel)
        # self.estimator = VitsWNDecoder(
        #     in_channels=in_channels,
        #     out_channels=out_channel,
        #     hidden_channels=out_channel,
        #     kernel_size=3,
        #     dilation_rate=1,
        #     n_layers=18,
        #     gin_channels=out_channel*2
        # )