|
import gradio as gr |
|
from audiosr import super_resolution, build_model |
|
import spaces |
|
|
|
|
|
audiosr = build_model(model_name='basic') |
|
audiosr_speech = build_model(model_name='speech') |
|
|
|
models = { |
|
'basic': audiosr, |
|
'speech': audiosr_speech |
|
} |
|
|
|
@spaces.GPU |
|
def inference(audio_file, model_name, guidance_scale, ddim_steps): |
|
audiosr = models[model_name] |
|
|
|
waveform = super_resolution( |
|
audiosr, |
|
audio_file, |
|
guidance_scale=guidance_scale, |
|
ddim_steps=ddim_steps |
|
) |
|
|
|
return (44100, waveform) |
|
|
|
iface = gr.Interface( |
|
fn=inference, |
|
inputs=[ |
|
gr.Audio(type="filepath", label="Input Audio"), |
|
gr.Dropdown(["basic", "speech"], value="basic", label="Model"), |
|
gr.Slider(1, 10, value=3.5, step=0.1, label="Guidance Scale"), |
|
gr.Slider(1, 100, value=50, step=1, label="DDIM Steps") |
|
], |
|
outputs=gr.Audio(type="numpy", label="Output Audio"), |
|
title="AudioSR", |
|
description="Audio Super Resolution with AudioSR" |
|
) |
|
|
|
iface.launch() |