Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,287 Bytes
78e32cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from .base_model import BaseModel
class RMSNorm(nn.Module):
def __init__(self, dimension, groups=1):
super().__init__()
self.weight = nn.Parameter(torch.ones(dimension))
self.groups = groups
self.eps = 1e-5
def forward(self, input):
# input size: (B, N, T)
B, N, T = input.shape
assert N % self.groups == 0
input_float = input.reshape(B, self.groups, -1, T).float()
input_norm = input_float * torch.rsqrt(input_float.pow(2).mean(-2, keepdim=True) + self.eps)
return input_norm.type_as(input).reshape(B, N, T) * self.weight.reshape(1, -1, 1)
class RMVN(nn.Module):
"""
Rescaled MVN.
"""
def __init__(self, dimension, groups=1):
super(RMVN, self).__init__()
self.mean = nn.Parameter(torch.zeros(dimension))
self.std = nn.Parameter(torch.ones(dimension))
self.groups = groups
self.eps = 1e-5
def forward(self, input):
# input size: (B, N, *)
B, N = input.shape[:2]
assert N % self.groups == 0
input_reshape = input.reshape(B, self.groups, N // self.groups, -1)
T = input_reshape.shape[-1]
input_norm = (input_reshape - input_reshape.mean(2).unsqueeze(2)) / (input_reshape.var(2).unsqueeze(2) + self.eps).sqrt()
input_norm = input_norm.reshape(B, N, T) * self.std.reshape(1, -1, 1) + self.mean.reshape(1, -1, 1)
return input_norm.reshape(input.shape)
class Roformer(nn.Module):
"""
Transformer with rotary positional embedding.
"""
def __init__(self, input_size, hidden_size, num_head=8, theta=10000, window=10000,
input_drop=0., attention_drop=0., causal=True):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size // num_head
self.num_head = num_head
self.theta = theta # base frequency for RoPE
self.window = window
# pre-calculate rotary embeddings
cos_freq, sin_freq = self._calc_rotary_emb()
self.register_buffer("cos_freq", cos_freq) # win, N
self.register_buffer("sin_freq", sin_freq) # win, N
self.attention_drop = attention_drop
self.causal = causal
self.eps = 1e-5
self.input_norm = RMSNorm(self.input_size)
self.input_drop = nn.Dropout(p=input_drop)
self.weight = nn.Conv1d(self.input_size, self.hidden_size*self.num_head*3, 1, bias=False)
self.output = nn.Conv1d(self.hidden_size*self.num_head, self.input_size, 1, bias=False)
self.MLP = nn.Sequential(RMSNorm(self.input_size),
nn.Conv1d(self.input_size, self.input_size*8, 1, bias=False),
nn.SiLU()
)
self.MLP_output = nn.Conv1d(self.input_size*4, self.input_size, 1, bias=False)
def _calc_rotary_emb(self):
freq = 1. / (self.theta ** (torch.arange(0, self.hidden_size, 2)[:(self.hidden_size // 2)] / self.hidden_size)) # theta_i
freq = freq.reshape(1, -1) # 1, N//2
pos = torch.arange(0, self.window).reshape(-1, 1) # win, 1
cos_freq = torch.cos(pos*freq) # win, N//2
sin_freq = torch.sin(pos*freq) # win, N//2
cos_freq = torch.stack([cos_freq]*2, -1).reshape(self.window, self.hidden_size) # win, N
sin_freq = torch.stack([sin_freq]*2, -1).reshape(self.window, self.hidden_size) # win, N
return cos_freq, sin_freq
def _add_rotary_emb(self, feature, pos):
# feature shape: ..., N
N = feature.shape[-1]
feature_reshape = feature.reshape(-1, N)
pos = min(pos, self.window-1)
cos_freq = self.cos_freq[pos]
sin_freq = self.sin_freq[pos]
reverse_sign = torch.from_numpy(np.asarray([-1, 1])).to(feature.device).type(feature.dtype)
feature_reshape_neg = (torch.flip(feature_reshape.reshape(-1, N//2, 2), [-1]) * reverse_sign.reshape(1, 1, 2)).reshape(-1, N)
feature_rope = feature_reshape * cos_freq.unsqueeze(0) + feature_reshape_neg * sin_freq.unsqueeze(0)
return feature_rope.reshape(feature.shape)
def _add_rotary_sequence(self, feature):
# feature shape: ..., T, N
T, N = feature.shape[-2:]
feature_reshape = feature.reshape(-1, T, N)
cos_freq = self.cos_freq[:T]
sin_freq = self.sin_freq[:T]
reverse_sign = torch.from_numpy(np.asarray([-1, 1])).to(feature.device).type(feature.dtype)
feature_reshape_neg = (torch.flip(feature_reshape.reshape(-1, N//2, 2), [-1]) * reverse_sign.reshape(1, 1, 2)).reshape(-1, T, N)
feature_rope = feature_reshape * cos_freq.unsqueeze(0) + feature_reshape_neg * sin_freq.unsqueeze(0)
return feature_rope.reshape(feature.shape)
def forward(self, input):
# input shape: B, N, T
B, _, T = input.shape
weight = self.weight(self.input_drop(self.input_norm(input))).reshape(B, self.num_head, self.hidden_size*3, T).mT
Q, K, V = torch.split(weight, self.hidden_size, dim=-1) # B, num_head, T, N
# rotary positional embedding
Q_rot = self._add_rotary_sequence(Q)
K_rot = self._add_rotary_sequence(K)
attention_output = F.scaled_dot_product_attention(Q_rot.contiguous(), K_rot.contiguous(), V.contiguous(), dropout_p=self.attention_drop, is_causal=self.causal) # B, num_head, T, N
attention_output = attention_output.mT.reshape(B, -1, T)
output = self.output(attention_output) + input
gate, z = self.MLP(output).chunk(2, dim=1)
output = output + self.MLP_output(F.silu(gate) * z)
return output, (K_rot, V)
class ConvActNorm1d(nn.Module):
def __init__(self, in_channel, hidden_channel, kernel=7, causal=False):
super(ConvActNorm1d, self).__init__()
self.in_channel = in_channel
self.kernel = kernel
self.causal = causal
if not causal:
self.conv = nn.Sequential(nn.Conv1d(in_channel, in_channel, kernel, padding=(kernel-1)//2, groups=in_channel),
RMSNorm(in_channel),
nn.Conv1d(in_channel, hidden_channel, 1),
nn.SiLU(),
nn.Conv1d(hidden_channel, in_channel, 1)
)
else:
self.conv = nn.Sequential(nn.Conv1d(in_channel, in_channel, kernel, padding=kernel-1, groups=in_channel),
RMSNorm(in_channel),
nn.Conv1d(in_channel, hidden_channel, 1),
nn.SiLU(),
nn.Conv1d(hidden_channel, in_channel, 1)
)
def forward(self, input):
output = self.conv(input)
if self.causal:
output = output[...,:-self.kernel+1]
return input + output
class ICB(nn.Module):
def __init__(self, in_channel, kernel=7, causal=False):
super(ICB, self).__init__()
self.blocks = nn.Sequential(ConvActNorm1d(in_channel, in_channel*4, kernel, causal=causal),
ConvActNorm1d(in_channel, in_channel*4, kernel, causal=causal),
ConvActNorm1d(in_channel, in_channel*4, kernel, causal=causal)
)
def forward(self, input):
return self.blocks(input)
class BSNet(nn.Module):
def __init__(self, feature_dim, kernel=7):
super(BSNet, self).__init__()
self.feature_dim = feature_dim
self.band_net = Roformer(self.feature_dim, self.feature_dim, num_head=8, window=100, causal=False)
self.seq_net = ICB(self.feature_dim, kernel=kernel)
def forward(self, input):
# input shape: B, nband, N, T
B, nband, N, T = input.shape
# band comm
band_input = input.permute(0,3,2,1).reshape(B*T, -1, nband)
band_output, _ = self.band_net(band_input)
band_output = band_output.reshape(B, T, -1, nband).permute(0,3,2,1)
# sequence modeling
output = self.seq_net(band_output.reshape(B*nband, -1, T)).reshape(B, nband, -1, T) # B, nband, N, T
return output
class Apollo(BaseModel):
def __init__(
self,
sr: int,
win: int,
feature_dim: int,
layer: int
):
super().__init__(sample_rate=sr)
self.sr = sr
self.win = int(sr * win // 1000)
self.stride = self.win // 2
self.enc_dim = self.win // 2 + 1
self.feature_dim = feature_dim
self.eps = torch.finfo(torch.float32).eps
# 80 bands
bandwidth = int(self.win / 160)
self.band_width = [bandwidth]*79
self.band_width.append(self.enc_dim - np.sum(self.band_width))
self.nband = len(self.band_width)
print(self.band_width, self.nband)
self.BN = nn.ModuleList([])
for i in range(self.nband):
self.BN.append(nn.Sequential(RMSNorm(self.band_width[i]*2+1),
nn.Conv1d(self.band_width[i]*2+1, self.feature_dim, 1))
)
self.net = []
for _ in range(layer):
self.net.append(BSNet(self.feature_dim))
self.net = nn.Sequential(*self.net)
self.output = nn.ModuleList([])
for i in range(self.nband):
self.output.append(nn.Sequential(RMSNorm(self.feature_dim),
nn.Conv1d(self.feature_dim, self.band_width[i]*4, 1),
nn.GLU(dim=1)
)
)
def spec_band_split(self, input):
B, nch, nsample = input.shape
spec = torch.stft(input.view(B*nch, nsample), n_fft=self.win, hop_length=self.stride,
window=torch.hann_window(self.win).to(input.device), return_complex=True)
subband_spec = []
subband_spec_norm = []
subband_power = []
band_idx = 0
for i in range(self.nband):
this_spec = spec[:,band_idx:band_idx+self.band_width[i]]
subband_spec.append(this_spec) # B, BW, T
subband_power.append((this_spec.abs().pow(2).sum(1) + self.eps).sqrt().unsqueeze(1)) # B, 1, T
subband_spec_norm.append(torch.complex(this_spec.real / subband_power[-1], this_spec.imag / subband_power[-1])) # B, BW, T
band_idx += self.band_width[i]
subband_power = torch.cat(subband_power, 1) # B, nband, T
return subband_spec_norm, subband_power
def feature_extractor(self, input):
subband_spec_norm, subband_power = self.spec_band_split(input)
# normalization and bottleneck
subband_feature = []
for i in range(self.nband):
concat_spec = torch.cat([subband_spec_norm[i].real, subband_spec_norm[i].imag, torch.log(subband_power[:,i].unsqueeze(1))], 1)
subband_feature.append(self.BN[i](concat_spec))
subband_feature = torch.stack(subband_feature, 1) # B, nband, N, T
return subband_feature
def forward(self, input):
B, nch, nsample = input.shape
subband_feature = self.feature_extractor(input)
feature = self.net(subband_feature)
est_spec = []
for i in range(self.nband):
this_RI = self.output[i](feature[:,i]).view(B*nch, 2, self.band_width[i], -1)
est_spec.append(torch.complex(this_RI[:,0], this_RI[:,1]))
est_spec = torch.cat(est_spec, 1)
output = torch.istft(est_spec, n_fft=self.win, hop_length=self.stride,
window=torch.hann_window(self.win).to(input.device), length=nsample).view(B, nch, -1)
return output
def get_model_args(self):
model_args = {"n_sample_rate": 2}
return model_args |