Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from collections import Counter, defaultdict | |
from datasets import load_dataset | |
import datasets | |
from huggingface_hub import HfApi, list_datasets | |
api = HfApi(token=os.environ.get("HF_TOKEN", None)) | |
def restart_space(): | |
api.restart_space(repo_id="OpenGenAI/parti-prompts-leaderboard") | |
parti_prompt_results = [] | |
ORG = "diffusers-parti-prompts" | |
SUBMISSIONS = { | |
"kand2": None, | |
"sdxl": None, | |
"wuerst": None, | |
"karlo": None, | |
} | |
LINKS = { | |
"kand2": "https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder", | |
"sdxl": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0", | |
"wuerst": "https://huggingface.co/warp-ai/wuerstchen", | |
"karlo": "https://huggingface.co/kakaobrain/karlo-v1-alpha", | |
} | |
MODEL_KEYS = "-".join(SUBMISSIONS.keys()) | |
SUBMISSION_ORG = f"result-{MODEL_KEYS}" | |
submission_names = list(SUBMISSIONS.keys()) | |
ds = load_dataset("nateraw/parti-prompts")["train"] | |
parti_prompt_categories = ds["Category"] | |
parti_prompt_challenge = ds["Challenge"] | |
def load_submissions(): | |
all_datasets = list_datasets(author=SUBMISSION_ORG) | |
relevant_ids = [d.id for d in all_datasets] | |
ids = defaultdict(list) | |
challenges = defaultdict(list) | |
categories = defaultdict(list) | |
total_submissions = 0 | |
for _id in relevant_ids: | |
try: | |
ds = load_dataset(_id)["train"] | |
except: | |
# skip dataset | |
continue | |
all_results = [] | |
all_ids = [] | |
for result, image_id in zip(ds["result"], ds["id"]): | |
all_result = result.split(",") | |
all_results += all_result | |
all_ids += (len(all_result) * [image_id]) | |
for result, image_id in zip(all_results, all_ids): | |
if result == "": | |
print(f"{result} was not solved by any model.") | |
elif result not in submission_names: | |
import ipdb; ipdb.set_trace() | |
# Make sure that incorrect model names are not added | |
continue | |
ids[result].append(image_id) | |
challenges[parti_prompt_challenge[image_id]].append(result) | |
categories[parti_prompt_categories[image_id]].append(result) | |
total_submissions += 1 | |
all_values = sum(len(v) for v in ids.values()) | |
main_dict = {k: float('{:.2}'.format(len(v)/all_values)) for k, v in ids.items()} | |
challenges = {k: Counter(v) for k, v in challenges.items()} | |
categories = {k: Counter(v) for k, v in categories.items()} | |
return total_submissions, main_dict, challenges, categories | |
def sort_by_highest_percentage(df): | |
# Convert percentage values to numeric format | |
df = df[df.loc[0].sort_values(ascending=False).index] | |
return df | |
def get_dataframe_all(): | |
total_submissions, main, challenges, categories = load_submissions() | |
main_frame = pd.DataFrame([main]) | |
challenges_frame = pd.DataFrame.from_dict(challenges).fillna(0).T | |
challenges_frame = challenges_frame.div(challenges_frame.sum(axis=1), axis=0) | |
categories_frame = pd.DataFrame.from_dict(categories).fillna(0).T | |
categories_frame = categories_frame.div(categories_frame.sum(axis=1), axis=0) | |
main_frame = main_frame.rename(columns={"": "NOT SOLVED"}) | |
categories_frame = categories_frame.rename(columns={"": "NOT SOLVED"}) | |
challenges_frame = challenges_frame.rename(columns={"": "NOT SOLVED"}) | |
main_frame = sort_by_highest_percentage(main_frame) | |
main_frame = main_frame.applymap(lambda x: '{:.2%}'.format(x)) | |
challenges_frame = challenges_frame.applymap(lambda x: '{:.2%}'.format(x)) | |
categories_frame = categories_frame.applymap(lambda x: '{:.2%}'.format(x)) | |
categories_frame = categories_frame.reindex(columns=main_frame.columns.to_list()) | |
challenges_frame = challenges_frame.reindex(columns=main_frame.columns.to_list()) | |
categories_frame = categories_frame.reset_index().rename(columns={'index': 'Category'}) | |
challenges_frame = challenges_frame.reset_index().rename(columns={'index': 'Challenge'}) | |
return total_submissions, main_frame, challenges_frame, categories_frame | |
TITLE = "# Open Parti Prompts Leaderboard" | |
DESCRIPTION = """ | |
The *Open Parti Prompts Leaderboard* compares state-of-the-art, open-source text-to-image models to each other according to **human preferences**. \n\n | |
Text-to-image models are notoriously difficult to evaluate. [FID](https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance) and | |
[CLIP Score](https://en.wikipedia.org/wiki/Fr%C3%A9chet_inception_distance) are not enough to accurately state whether a text-to-image model can | |
**generate "good" images**. "Good" is extremely difficult to put into numbers. \n\n | |
Instead, the **Open Parti Prompts Leaderboard** uses human feedback from the community to compare images from different text-to-image models to each other. | |
\n\n | |
❤️ ***Please take 3 minutes to contribute to the benchmark.*** \n | |
👉 ***Play one round of [Open Parti Prompts Game](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts) to contribute 10 answers.*** 🤗 | |
""" | |
EXPLANATION = """\n\n | |
## How the is data collected 📊 \n\n | |
In more detail, the [Open Parti Prompts Game](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts) collects human preferences that state which generated image | |
best fits a given prompt from the [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts) dataset. Parti Prompts has been designed to challenge | |
text-to-image models on prompts of varying categories and difficulty. The images have been pre-generated from the models that are compared in this space. | |
For more information of how the images were created, please refer to [Open Parti Prompts](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts). | |
The community's answers are then stored and used in this space to give a human-preference-based comparison of the different models. \n\n | |
Currently the leaderboard includes the following models: | |
- [Kandinsky 2.2](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder) | |
- [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
- [Wuerstchen](https://huggingface.co/warp-ai/wuerstchen) | |
- [Karlo](https://huggingface.co/kakaobrain/karlo-v1-alpha) | |
In the following you can see three result tables. The first shows the overall comparison of the 4 models. The score states, | |
**the percentage at which images generated from the corresponding model are preferred over the image from all other models**. The second and third tables | |
show you a breakdown analysis per category and per type of challenge as defined by [Parti Prompts](https://huggingface.co/datasets/nateraw/parti-prompts). | |
""" | |
GALLERY_COLUMN_NUM = len(SUBMISSIONS) | |
def refresh(): | |
return get_dataframe_all() | |
with gr.Blocks() as demo: | |
with gr.Column(visible=True) as intro_view: | |
gr.Markdown(TITLE) | |
gr.Markdown(DESCRIPTION) | |
gr.Markdown(EXPLANATION) | |
headers = list(SUBMISSIONS.keys()) | |
datatype = "str" | |
total_submissions, main_df, challenge_df, category_df = get_dataframe_all() | |
with gr.Column(): | |
gr.Markdown("# Open Parti Prompts") | |
main_dataframe = gr.Dataframe( | |
value=main_df, | |
headers=main_df.columns.to_list(), | |
datatype="str", | |
row_count=main_df.shape[0], | |
col_count=main_df.shape[1], | |
interactive=False, | |
) | |
with gr.Column(): | |
gr.Markdown("## per category") | |
cat_dataframe = gr.Dataframe( | |
value=category_df, | |
headers=category_df.columns.to_list(), | |
datatype="str", | |
row_count=category_df.shape[0], | |
col_count=category_df.shape[1], | |
interactive=False, | |
) | |
with gr.Column(): | |
gr.Markdown("## per challenge") | |
chal_dataframe = gr.Dataframe( | |
value=challenge_df, | |
headers=challenge_df.columns.to_list(), | |
datatype="str", | |
row_count=challenge_df.shape[0], | |
col_count=challenge_df.shape[1], | |
interactive=False, | |
) | |
with gr.Column(): | |
gr.Markdown("## # Submissions") | |
num_submissions = gr.Number(value=total_submissions, interactive=False) | |
with gr.Row(): | |
refresh_button = gr.Button("Refresh") | |
refresh_button.click(refresh, inputs=[], outputs=[num_submissions, main_dataframe, cat_dataframe, chal_dataframe]) | |
# Restart space every 20 minutes | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, 'interval', seconds=3600) | |
scheduler.start() | |
demo.launch() | |