Spaces:
Running
on
Zero
Running
on
Zero
patrickligardes
commited on
Update utils_mask.py
Browse files- utils_mask.py +33 -45
utils_mask.py
CHANGED
@@ -24,11 +24,11 @@ label_map = {
|
|
24 |
}
|
25 |
|
26 |
def extend_arm_mask(wrist, elbow, scale):
|
27 |
-
|
28 |
-
|
29 |
|
30 |
def hole_fill(img):
|
31 |
-
img = np.pad(img[1:-1, 1:-1], pad_width=1, mode='constant', constant_values=0)
|
32 |
img_copy = img.copy()
|
33 |
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
|
34 |
|
@@ -51,7 +51,7 @@ def refine_mask(mask):
|
|
51 |
|
52 |
return refine_mask
|
53 |
|
54 |
-
def get_mask_location(model_type, category, model_parse: Image.Image, keypoint: dict, width=384,
|
55 |
im_parse = model_parse.resize((width, height), Image.NEAREST)
|
56 |
parse_array = np.array(im_parse)
|
57 |
|
@@ -60,58 +60,48 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
60 |
elif model_type == 'dc':
|
61 |
arm_width = 45
|
62 |
else:
|
63 |
-
raise ValueError("model_type must be 'hd' or 'dc'!")
|
64 |
|
65 |
-
parse_head = (parse_array ==
|
66 |
-
(parse_array ==
|
67 |
-
(parse_array ==
|
68 |
-
(parse_array == label_map["sunglasses"]).astype(np.float32)
|
69 |
|
70 |
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
71 |
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
72 |
-
(parse_array == label_map["
|
73 |
-
(parse_array == label_map["
|
|
|
74 |
|
75 |
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
|
76 |
|
77 |
-
arms_left = (parse_array ==
|
78 |
-
arms_right = (parse_array ==
|
79 |
-
|
80 |
-
if category == 'dresses':
|
81 |
-
# Initial dress mask for the upper body (excluding head)
|
82 |
-
parse_mask_upper = np.logical_or((parse_array == label_map["upper_clothes"]), (parse_array == label_map["dress"])).astype(np.float32)
|
83 |
-
|
84 |
-
# Create a mask for the legs (including skirts and pants)
|
85 |
-
parse_mask_legs = np.logical_or.reduce((parse_array == label_map["skirt"],
|
86 |
-
parse_array == label_map["pants"],
|
87 |
-
parse_array == label_map["left_leg"],
|
88 |
-
parse_array == label_map["right_leg"])).astype(np.float32)
|
89 |
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
parse_mask = np.maximum(parse_mask_upper, parse_mask_legs_dilated)
|
95 |
|
96 |
elif category == 'upper_body':
|
97 |
-
parse_mask = (parse_array ==
|
98 |
-
|
|
|
|
|
99 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
100 |
-
|
101 |
elif category == 'lower_body':
|
102 |
-
parse_mask = (parse_array ==
|
103 |
-
(parse_array ==
|
104 |
-
(parse_array ==
|
105 |
-
(parse_array ==
|
106 |
-
|
107 |
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
108 |
-
(parse_array ==
|
109 |
-
(parse_array ==
|
110 |
-
|
111 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
112 |
-
|
113 |
else:
|
114 |
-
raise NotImplementedError
|
115 |
|
116 |
# Load pose points
|
117 |
pose_data = keypoint["pose_keypoints_2d"]
|
@@ -122,7 +112,6 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
122 |
im_arms_right = Image.new('L', (width, height))
|
123 |
arms_draw_left = ImageDraw.Draw(im_arms_left)
|
124 |
arms_draw_right = ImageDraw.Draw(im_arms_right)
|
125 |
-
|
126 |
if category == 'dresses' or category == 'upper_body':
|
127 |
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
|
128 |
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
|
@@ -134,6 +123,7 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
134 |
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
|
135 |
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
|
136 |
shoulder_right[1] + ARM_LINE_WIDTH // 2]
|
|
|
137 |
|
138 |
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
139 |
im_arms_right = arms_right
|
@@ -154,9 +144,7 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
154 |
parser_mask_fixed += hands_left + hands_right
|
155 |
|
156 |
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
|
157 |
-
parse_mask = cv2.dilate(parse_mask
|
158 |
-
|
159 |
-
|
160 |
if category == 'dresses' or category == 'upper_body':
|
161 |
neck_mask = (parse_array == 18).astype(np.float32)
|
162 |
neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
|
@@ -176,4 +164,4 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
|
|
176 |
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
|
177 |
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)
|
178 |
|
179 |
-
return mask, mask_gray
|
|
|
24 |
}
|
25 |
|
26 |
def extend_arm_mask(wrist, elbow, scale):
|
27 |
+
wrist = elbow + scale * (wrist - elbow)
|
28 |
+
return wrist
|
29 |
|
30 |
def hole_fill(img):
|
31 |
+
img = np.pad(img[1:-1, 1:-1], pad_width = 1, mode = 'constant', constant_values=0)
|
32 |
img_copy = img.copy()
|
33 |
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
|
34 |
|
|
|
51 |
|
52 |
return refine_mask
|
53 |
|
54 |
+
def get_mask_location(model_type, category, model_parse: Image.Image, keypoint: dict, width=384,height=512):
|
55 |
im_parse = model_parse.resize((width, height), Image.NEAREST)
|
56 |
parse_array = np.array(im_parse)
|
57 |
|
|
|
60 |
elif model_type == 'dc':
|
61 |
arm_width = 45
|
62 |
else:
|
63 |
+
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
64 |
|
65 |
+
parse_head = (parse_array == 1).astype(np.float32) + \
|
66 |
+
(parse_array == 3).astype(np.float32) + \
|
67 |
+
(parse_array == 11).astype(np.float32)
|
|
|
68 |
|
69 |
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
70 |
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
71 |
+
(parse_array == label_map["hat"]).astype(np.float32) + \
|
72 |
+
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
|
73 |
+
(parse_array == label_map["bag"]).astype(np.float32)
|
74 |
|
75 |
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
|
76 |
|
77 |
+
arms_left = (parse_array == 14).astype(np.float32)
|
78 |
+
arms_right = (parse_array == 15).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
if category == 'dresses':
|
81 |
+
parse_mask = (parse_array == 7).astype(np.float32) + \
|
82 |
+
(parse_array == 4).astype(np.float32) + \
|
83 |
+
(parse_array == 5).astype(np.float32) + \
|
84 |
+
(parse_array == 6).astype(np.float32)
|
85 |
|
86 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
|
|
87 |
|
88 |
elif category == 'upper_body':
|
89 |
+
parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
90 |
+
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
|
91 |
+
(parse_array == label_map["pants"]).astype(np.float32)
|
92 |
+
parser_mask_fixed += parser_mask_fixed_lower_cloth
|
93 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
|
|
94 |
elif category == 'lower_body':
|
95 |
+
parse_mask = (parse_array == 6).astype(np.float32) + \
|
96 |
+
(parse_array == 12).astype(np.float32) + \
|
97 |
+
(parse_array == 13).astype(np.float32) + \
|
98 |
+
(parse_array == 5).astype(np.float32)
|
|
|
99 |
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
100 |
+
(parse_array == 14).astype(np.float32) + \
|
101 |
+
(parse_array == 15).astype(np.float32)
|
|
|
102 |
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
|
|
103 |
else:
|
104 |
+
raise NotImplementedError
|
105 |
|
106 |
# Load pose points
|
107 |
pose_data = keypoint["pose_keypoints_2d"]
|
|
|
112 |
im_arms_right = Image.new('L', (width, height))
|
113 |
arms_draw_left = ImageDraw.Draw(im_arms_left)
|
114 |
arms_draw_right = ImageDraw.Draw(im_arms_right)
|
|
|
115 |
if category == 'dresses' or category == 'upper_body':
|
116 |
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
|
117 |
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
|
|
|
123 |
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
|
124 |
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
|
125 |
shoulder_right[1] + ARM_LINE_WIDTH // 2]
|
126 |
+
|
127 |
|
128 |
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
129 |
im_arms_right = arms_right
|
|
|
144 |
parser_mask_fixed += hands_left + hands_right
|
145 |
|
146 |
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
|
147 |
+
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
|
|
|
|
|
148 |
if category == 'dresses' or category == 'upper_body':
|
149 |
neck_mask = (parse_array == 18).astype(np.float32)
|
150 |
neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
|
|
|
164 |
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
|
165 |
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)
|
166 |
|
167 |
+
return mask, mask_gray
|