mangaka / app.py
parsee-mizuhashi's picture
Update app.py
7222f5b verified
raw
history blame
5.56 kB
import torch
from PIL import Image, ImageOps, ImageSequence
import numpy as np
import comfy.sample
import comfy.sd
def vencode(vae, pth):
pilimg = pth
pixels = np.array(pilimg).astype(np.float32) / 255.0
pixels = torch.from_numpy(pixels)[None,]
t = vae.encode(pixels[:,:,:,:3])
return {"samples":t}
from pathlib import Path
if not Path("model.safetensors").exists():
import requests
with open("model.safetensors", "wb") as f:
f.write(requests.get("https://huggingface.co/parsee-mizuhashi/mangaka/resolve/main/mangaka.safetensors?download=true").content)
MODEL_FILE = "model.safetensors"
with torch.no_grad():
unet, clip, vae = comfy.sd.load_checkpoint_guess_config(MODEL_FILE, output_vae=True, output_clip=True)[:3]# :3
BASE_NEG = "(low-quality worst-quality:1.4 (bad-anatomy (inaccurate-limb:1.2 bad-composition inaccurate-eyes extra-digit fewer-digits (extra-arms:1.2)"
DEVICE = "cpu" if not torch.cuda.is_available() else "cuda"
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0):
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
latnt = latent["samples"]
noise = comfy.sample.prepare_noise(latnt, seed, None)
disable_pbar = True
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latnt,
denoise=denoise, noise_mask=noise_mask, disable_pbar=disable_pbar, seed=seed)
out = samples
return out
def set_mask(samples, mask):
s = samples.copy()
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
return s
def load_image_mask(image):
image_path = image
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
if i.getbands() != ("R", "G", "B", "A"):
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
i = i.convert("RGBA")
mask = None
c = "A"
if c in i.getbands():
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
mask = torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
return mask.unsqueeze(0)
@torch.no_grad()
def main(img, variant, positive, negative, pilimg):
variant = min(int(variant), limits[img])
global unet, clip, vae
mask = load_image_mask(f"./mangaka-d/{img}/i{variant}.png")
tkns = clip.tokenize("(greyscale monochrome black-and-white:1.3)" + positive)
cond, c = clip.encode_from_tokens(tkns, return_pooled=True)
uncond_tkns = clip.tokenize(BASE_NEG + negative)
uncond, uc = clip.encode_from_tokens(uncond_tkns, return_pooled=True)
cn = [[cond, {"pooled_output": c}]]
un = [[uncond, {"pooled_output": uc}]]
latent = vencode(vae, pilimg)
latent = set_mask(latent, mask)
denoised = common_ksampler(unet, 0, 20, 7, 'ddpm', 'karras', cn, un, latent, denoise=1)
decoded = vae.decode(denoised)
i = 255. * decoded[0].cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
return img
limits = {
"1": 4,
"2": 4,
"3": 5,
"4": 6,
"5": 4,
"6": 6,
"7": 8,
"8": 5,
"9": 5,
"s1": 4,
"s2": 6,
"s3": 5,
"s4": 5,
"s5": 4,
"s6": 4
}
import gradio as gr
def visualize_fn(page, panel):
base = f"./mangaka-d/{page}/base.png"
base = Image.open(base)
if panel == "none":
return base
panel = min(int(panel), limits[page])
mask = f"./mangaka-d/{page}/i{panel}.png"
base = base.convert("RGBA")
mask = Image.open(mask)
#remove all green and blue from the mask
mask = mask.convert("RGBA")
data = mask.getdata()
data = [
(255, 0, 0, 255) if pixel[:3] == (255, 255, 255) else pixel
for pixel in mask.getdata()
]
mask.putdata(data)
#overlay the mask on the base
base.paste(mask, (0,0), mask)
return base
def reset_fn(page):
base = f"./mangaka-d/{page}/base.png"
base = Image.open(base)
return base
with gr.Blocks() as demo:
with gr.Tab("Mangaka"):
with gr.Row():
with gr.Column():
positive = gr.Textbox(label="Positive prompt", lines=2)
negative = gr.Textbox(label="Negative prompt")
with gr.Accordion("Page Settings"):
with gr.Row():
with gr.Column():
page = gr.Dropdown(label="Page", choices=["1", "2", "3", "4", "5", "6", "7", "8", "9", "s1", "s2", "s3", "s4", "s5", "s6"], value="s1")
panel = gr.Dropdown(label="Panel", choices=["1", "2", "3", "4", "5", "6", "7", "8", "none"], value="1")
visualize = gr.Button("Visualize")
with gr.Column():
visualize_output = gr.Image(interactive=False)
visualize.click(visualize_fn, inputs=[page, panel], outputs=visualize_output)
with gr.Column():
with gr.Row():
with gr.Column():
generate = gr.Button("Generate", variant="primary")
with gr.Column():
reset = gr.Button("Reset", variant="stop")
current_panel = gr.Image(interactive=False)
reset.click(reset_fn, inputs=[page], outputs=current_panel)
generate.click(main, inputs=[page, panel, positive, negative, current_panel], outputs=current_panel)
demo.launch()