Spaces:
Running
on
Zero
Running
on
Zero
parokshsaxena
commited on
Commit
Β·
d52990b
1
Parent(s):
72b00c6
using enhanced garment net based on the claude suggestions
Browse files- src/enhanced_garment_net.py +123 -0
- src/tryon_pipeline.py +5 -1
src/enhanced_garment_net.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
class ResidualBlock(nn.Module):
|
6 |
+
def __init__(self, in_channels, out_channels):
|
7 |
+
super(ResidualBlock, self).__init__()
|
8 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
9 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
|
10 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
11 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
12 |
+
self.relu = nn.ReLU(inplace=True)
|
13 |
+
self.downsample = nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
residual = x
|
17 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
18 |
+
out = self.bn2(self.conv2(out))
|
19 |
+
if self.downsample:
|
20 |
+
residual = self.downsample(x)
|
21 |
+
out += residual
|
22 |
+
return self.relu(out)
|
23 |
+
|
24 |
+
class EnhancedGarmentNet(nn.Module):
|
25 |
+
def __init__(self, in_channels=3, base_channels=64, num_residual_blocks=4):
|
26 |
+
super(EnhancedGarmentNet, self).__init__()
|
27 |
+
|
28 |
+
self.initial = nn.Sequential(
|
29 |
+
nn.Conv2d(in_channels, base_channels, kernel_size=7, padding=3),
|
30 |
+
nn.BatchNorm2d(base_channels),
|
31 |
+
nn.ReLU(inplace=True)
|
32 |
+
)
|
33 |
+
|
34 |
+
self.encoder1 = self._make_layer(base_channels, base_channels, num_residual_blocks)
|
35 |
+
self.encoder2 = self._make_layer(base_channels, base_channels*2, num_residual_blocks)
|
36 |
+
self.encoder3 = self._make_layer(base_channels*2, base_channels*4, num_residual_blocks)
|
37 |
+
|
38 |
+
self.bridge = self._make_layer(base_channels*4, base_channels*8, num_residual_blocks)
|
39 |
+
|
40 |
+
self.decoder3 = self._make_layer(base_channels*8, base_channels*4, num_residual_blocks)
|
41 |
+
self.decoder2 = self._make_layer(base_channels*4, base_channels*2, num_residual_blocks)
|
42 |
+
self.decoder1 = self._make_layer(base_channels*2, base_channels, num_residual_blocks)
|
43 |
+
|
44 |
+
self.final = nn.Conv2d(base_channels, in_channels, kernel_size=7, padding=3)
|
45 |
+
|
46 |
+
self.downsample = nn.MaxPool2d(2)
|
47 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
48 |
+
|
49 |
+
def _make_layer(self, in_channels, out_channels, num_blocks):
|
50 |
+
layers = []
|
51 |
+
layers.append(ResidualBlock(in_channels, out_channels))
|
52 |
+
for _ in range(1, num_blocks):
|
53 |
+
layers.append(ResidualBlock(out_channels, out_channels))
|
54 |
+
return nn.Sequential(*layers)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
# Initial convolution
|
58 |
+
x = self.initial(x)
|
59 |
+
|
60 |
+
# Encoder
|
61 |
+
e1 = self.encoder1(x)
|
62 |
+
e2 = self.encoder2(self.downsample(e1))
|
63 |
+
e3 = self.encoder3(self.downsample(e2))
|
64 |
+
|
65 |
+
# Bridge
|
66 |
+
b = self.bridge(self.downsample(e3))
|
67 |
+
|
68 |
+
# Decoder with skip connections
|
69 |
+
d3 = self.decoder3(torch.cat([self.upsample(b), e3], dim=1))
|
70 |
+
d2 = self.decoder2(torch.cat([self.upsample(d3), e2], dim=1))
|
71 |
+
d1 = self.decoder1(torch.cat([self.upsample(d2), e1], dim=1))
|
72 |
+
|
73 |
+
# Final convolution
|
74 |
+
out = self.final(d1)
|
75 |
+
|
76 |
+
return out, [e1, e2, e3, b]
|
77 |
+
|
78 |
+
class EnhancedGarmentNetWithTimestep(nn.Module):
|
79 |
+
def __init__(self, in_channels=3, base_channels=64, num_residual_blocks=4, time_emb_dim=256):
|
80 |
+
super(EnhancedGarmentNetWithTimestep, self).__init__()
|
81 |
+
|
82 |
+
self.garment_net = EnhancedGarmentNet(in_channels, base_channels, num_residual_blocks)
|
83 |
+
|
84 |
+
# Timestep embedding
|
85 |
+
self.time_mlp = nn.Sequential(
|
86 |
+
nn.Linear(1, time_emb_dim),
|
87 |
+
nn.SiLU(),
|
88 |
+
nn.Linear(time_emb_dim, time_emb_dim)
|
89 |
+
)
|
90 |
+
|
91 |
+
# Projection for text embeddings
|
92 |
+
self.text_proj = nn.Linear(768, time_emb_dim) # Assuming text embeddings are 768-dimensional
|
93 |
+
|
94 |
+
# Combine garment features with time and text embeddings
|
95 |
+
self.combine = nn.ModuleList([
|
96 |
+
nn.Conv2d(base_channels + time_emb_dim, base_channels, kernel_size=1),
|
97 |
+
nn.Conv2d(base_channels*2 + time_emb_dim, base_channels*2, kernel_size=1),
|
98 |
+
nn.Conv2d(base_channels*4 + time_emb_dim, base_channels*4, kernel_size=1),
|
99 |
+
nn.Conv2d(base_channels*8 + time_emb_dim, base_channels*8, kernel_size=1)
|
100 |
+
])
|
101 |
+
|
102 |
+
def forward(self, x, t, text_embeds):
|
103 |
+
# Get garment features
|
104 |
+
garment_out, garment_features = self.garment_net(x)
|
105 |
+
|
106 |
+
# Process timestep
|
107 |
+
t_emb = self.time_mlp(t.unsqueeze(-1)).unsqueeze(-1).unsqueeze(-1)
|
108 |
+
|
109 |
+
# Process text embeddings
|
110 |
+
text_emb = self.text_proj(text_embeds).unsqueeze(-1).unsqueeze(-1)
|
111 |
+
|
112 |
+
# Combine embeddings
|
113 |
+
cond_emb = t_emb + text_emb
|
114 |
+
|
115 |
+
# Combine garment features with conditional embedding
|
116 |
+
combined_features = []
|
117 |
+
for feat, comb_layer in zip(garment_features, self.combine):
|
118 |
+
# Expand conditional embedding to match feature map size
|
119 |
+
expanded_cond_emb = cond_emb.expand(-1, -1, feat.size(2), feat.size(3))
|
120 |
+
combined = comb_layer(torch.cat([feat, expanded_cond_emb], dim=1))
|
121 |
+
combined_features.append(combined)
|
122 |
+
|
123 |
+
return garment_out, combined_features
|
src/tryon_pipeline.py
CHANGED
@@ -56,6 +56,8 @@ from diffusers.utils import (
|
|
56 |
from diffusers.utils.torch_utils import randn_tensor
|
57 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
58 |
|
|
|
|
|
59 |
|
60 |
|
61 |
if is_torch_xla_available():
|
@@ -398,6 +400,7 @@ class StableDiffusionXLInpaintPipeline(
|
|
398 |
force_zeros_for_empty_prompt: bool = True,
|
399 |
):
|
400 |
super().__init__()
|
|
|
401 |
|
402 |
self.register_modules(
|
403 |
vae=vae,
|
@@ -1781,7 +1784,8 @@ class StableDiffusionXLInpaintPipeline(
|
|
1781 |
if ip_adapter_image is not None:
|
1782 |
added_cond_kwargs["image_embeds"] = image_embeds
|
1783 |
# down,reference_features = self.UNet_Encoder(cloth,t, text_embeds_cloth,added_cond_kwargs= {"text_embeds": pooled_prompt_embeds_c, "time_ids": add_time_ids},return_dict=False)
|
1784 |
-
down,reference_features = self.unet_encoder(cloth,t, text_embeds_cloth,return_dict=False)
|
|
|
1785 |
# print(type(reference_features))
|
1786 |
# print(reference_features)
|
1787 |
reference_features = list(reference_features)
|
|
|
56 |
from diffusers.utils.torch_utils import randn_tensor
|
57 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
58 |
|
59 |
+
from enhanced_garment_net import EnhancedGarmentNetWithTimestep
|
60 |
+
|
61 |
|
62 |
|
63 |
if is_torch_xla_available():
|
|
|
400 |
force_zeros_for_empty_prompt: bool = True,
|
401 |
):
|
402 |
super().__init__()
|
403 |
+
self.garment_net = EnhancedGarmentNetWithTimestep()
|
404 |
|
405 |
self.register_modules(
|
406 |
vae=vae,
|
|
|
1784 |
if ip_adapter_image is not None:
|
1785 |
added_cond_kwargs["image_embeds"] = image_embeds
|
1786 |
# down,reference_features = self.UNet_Encoder(cloth,t, text_embeds_cloth,added_cond_kwargs= {"text_embeds": pooled_prompt_embeds_c, "time_ids": add_time_ids},return_dict=False)
|
1787 |
+
# down,reference_features = self.unet_encoder(cloth,t, text_embeds_cloth,return_dict=False)
|
1788 |
+
garment_out, reference_features = self.garment_net(cloth, t, text_embeds_cloth)
|
1789 |
# print(type(reference_features))
|
1790 |
# print(reference_features)
|
1791 |
reference_features = list(reference_features)
|