Spaces:
Running
on
Zero
Running
on
Zero
parokshsaxena
commited on
Commit
Β·
1dddd5f
1
Parent(s):
9065906
using shein sizes
Browse files- app.py +7 -5
- src/background_processor.py +200 -2
app.py
CHANGED
@@ -122,10 +122,12 @@ pipe = TryonPipeline.from_pretrained(
|
|
122 |
)
|
123 |
pipe.unet_encoder = UNet_Encoder
|
124 |
|
125 |
-
#
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
129 |
POSE_WIDTH = int(WIDTH/2) # int(WIDTH/2)
|
130 |
POSE_HEIGHT = int(HEIGHT/2) #int(HEIGHT/2)
|
131 |
|
@@ -259,7 +261,7 @@ def start_tryon(dict,garm_img,garment_des, background_img, is_checked,is_checked
|
|
259 |
# apply background to final image
|
260 |
if background_img:
|
261 |
logging.info("Adding background")
|
262 |
-
final_image = BackgroundProcessor.
|
263 |
return final_image, mask_gray
|
264 |
# return images[0], mask_gray
|
265 |
|
|
|
122 |
)
|
123 |
pipe.unet_encoder = UNet_Encoder
|
124 |
|
125 |
+
# Standard size of shein images
|
126 |
+
WIDTH = int(4160/5)
|
127 |
+
HEIGHT = int(6240/5)
|
128 |
+
# Standard size on which model is trained
|
129 |
+
#WIDTH = int(768)
|
130 |
+
#HEIGHT = int(1024)
|
131 |
POSE_WIDTH = int(WIDTH/2) # int(WIDTH/2)
|
132 |
POSE_HEIGHT = int(HEIGHT/2) #int(HEIGHT/2)
|
133 |
|
|
|
261 |
# apply background to final image
|
262 |
if background_img:
|
263 |
logging.info("Adding background")
|
264 |
+
final_image = BackgroundProcessor.add_background_v3(final_image, background_img)
|
265 |
return final_image, mask_gray
|
266 |
# return images[0], mask_gray
|
267 |
|
src/background_processor.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
from PIL import Image
|
|
|
2 |
import numpy as np
|
3 |
from preprocess.humanparsing.run_parsing import Parsing
|
4 |
|
@@ -35,4 +36,201 @@ class BackgroundProcessor:
|
|
35 |
result_img = Image.fromarray(human_with_background.astype('uint8'))
|
36 |
|
37 |
# Return or save the result
|
38 |
-
return result_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageEnhance
|
2 |
+
import cv2
|
3 |
import numpy as np
|
4 |
from preprocess.humanparsing.run_parsing import Parsing
|
5 |
|
|
|
36 |
result_img = Image.fromarray(human_with_background.astype('uint8'))
|
37 |
|
38 |
# Return or save the result
|
39 |
+
return result_img
|
40 |
+
|
41 |
+
@classmethod
|
42 |
+
def temp_v2(cls, human_img_path, background_img_path, mask_img_path):
|
43 |
+
# Load the images
|
44 |
+
foreground_img = cv2.imread(human_img_path).resize((768,1024)) # The segmented person image
|
45 |
+
background_img = cv2.imread(background_img_path) # The new background image
|
46 |
+
mask_img = cv2.imread(mask_img_path, cv2.IMREAD_GRAYSCALE) # The mask image from the human parser model
|
47 |
+
|
48 |
+
# Ensure the foreground image and the mask are the same size
|
49 |
+
if foreground_img.shape[:2] != mask_img.shape[:2]:
|
50 |
+
raise ValueError("Foreground image and mask must be the same size")
|
51 |
+
|
52 |
+
# Resize background image to match the size of the foreground image
|
53 |
+
background_img = cv2.resize(background_img, (foreground_img.shape[1], foreground_img.shape[0]))
|
54 |
+
|
55 |
+
# Create an inverted mask
|
56 |
+
mask_inv = cv2.bitwise_not(mask_img)
|
57 |
+
|
58 |
+
# Convert mask to 3 channels
|
59 |
+
mask_3ch = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2BGR)
|
60 |
+
mask_inv_3ch = cv2.cvtColor(mask_inv, cv2.COLOR_GRAY2BGR)
|
61 |
+
|
62 |
+
# Extract the person from the foreground image using the mask
|
63 |
+
person = cv2.bitwise_and(foreground_img, mask_3ch)
|
64 |
+
|
65 |
+
# Extract the background where the person is not present
|
66 |
+
background = cv2.bitwise_and(background_img, mask_inv_3ch)
|
67 |
+
|
68 |
+
# Combine the person and the new background
|
69 |
+
combined_img = cv2.add(person, background)
|
70 |
+
|
71 |
+
# Refine edges using Gaussian Blur (feathering technique)
|
72 |
+
blurred_combined_img = cv2.GaussianBlur(combined_img, (5, 5), 0)
|
73 |
+
|
74 |
+
# Post-processing: Adjust brightness, contrast, etc. (optional)
|
75 |
+
alpha = 1.2 # Contrast control (1.0-3.0)
|
76 |
+
beta = 20 # Brightness control (0-100)
|
77 |
+
|
78 |
+
post_processed_img = cv2.convertScaleAbs(blurred_combined_img, alpha=alpha, beta=beta)
|
79 |
+
|
80 |
+
# Save the final image
|
81 |
+
# cv2.imwrite('path_to_save_final_image.png', post_processed_img)
|
82 |
+
|
83 |
+
# Display the images (optional)
|
84 |
+
cv2.imshow('Foreground', foreground_img)
|
85 |
+
cv2.imshow('Background', background_img)
|
86 |
+
cv2.imshow('Mask', mask_img)
|
87 |
+
cv2.imshow('Combined', combined_img)
|
88 |
+
cv2.imshow('Post Processed', post_processed_img)
|
89 |
+
cv2.waitKey(0)
|
90 |
+
cv2.destroyAllWindows()
|
91 |
+
return post_processed_img
|
92 |
+
|
93 |
+
|
94 |
+
@classmethod
|
95 |
+
def add_background_v3(cls, foreground_pil: Image, background_pil: Image):
|
96 |
+
foreground_pil= foreground_pil.convert("RGB")
|
97 |
+
width = foreground_pil.width
|
98 |
+
height = foreground_pil.height
|
99 |
+
|
100 |
+
# Create mask image
|
101 |
+
parsed_img, _ = parsing_model(foreground_pil)
|
102 |
+
mask_pil = parsed_img.convert("L")
|
103 |
+
# Apply a threshold to convert to binary image
|
104 |
+
# mask_pil = mask_pil.point(lambda p: 1 if p > 127 else 0, mode='1')
|
105 |
+
mask_pil = mask_pil.resize((width, height))
|
106 |
+
|
107 |
+
# Resize background image
|
108 |
+
background_pil = background_pil.convert("RGB")
|
109 |
+
background_pil = background_pil.resize((width, height))
|
110 |
+
|
111 |
+
# Load the images using PIL
|
112 |
+
#foreground_pil = Image.open(human_img_path).convert("RGB") # The segmented person image
|
113 |
+
#background_pil = Image.open(background_img_path).convert("RGB") # The new background image
|
114 |
+
#mask_pil = Image.open(mask_img_path).convert('L') # The mask image from the human parser model
|
115 |
+
|
116 |
+
# Resize the background to match the size of the foreground
|
117 |
+
#background_pil = background_pil.resize(foreground_pil.size)
|
118 |
+
|
119 |
+
# Resize mask
|
120 |
+
#mask_pil = mask_pil.resize(foreground_pil.size)
|
121 |
+
|
122 |
+
# Convert PIL images to OpenCV format
|
123 |
+
foreground_cv2 = cls.pil_to_cv2(foreground_pil)
|
124 |
+
background_cv2 = cls.pil_to_cv2(background_pil)
|
125 |
+
#mask_cv2 = pil_to_cv2(mask_pil)
|
126 |
+
mask_cv2 = np.array(mask_pil) # Directly convert to NumPy array without color conversion
|
127 |
+
|
128 |
+
# Ensure the mask is a single channel image
|
129 |
+
if len(mask_cv2.shape) == 3:
|
130 |
+
mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY)
|
131 |
+
|
132 |
+
# Threshold the mask to convert it to pure black and white
|
133 |
+
_, mask_cv2 = cv2.threshold(mask_cv2, 0, 255, cv2.THRESH_BINARY)
|
134 |
+
|
135 |
+
# Ensure the mask is a single channel image
|
136 |
+
#if len(mask_cv2.shape) == 3:
|
137 |
+
# mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY)
|
138 |
+
|
139 |
+
# Create an inverted mask
|
140 |
+
mask_inv_cv2 = cv2.bitwise_not(mask_cv2)
|
141 |
+
|
142 |
+
# Convert mask to 3 channels
|
143 |
+
mask_3ch_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_GRAY2BGR)
|
144 |
+
mask_inv_3ch_cv2 = cv2.cvtColor(mask_inv_cv2, cv2.COLOR_GRAY2BGR)
|
145 |
+
|
146 |
+
# Extract the person from the foreground image using the mask
|
147 |
+
person_cv2 = cv2.bitwise_and(foreground_cv2, mask_3ch_cv2)
|
148 |
+
|
149 |
+
# Extract the background where the person is not present
|
150 |
+
background_extracted_cv2 = cv2.bitwise_and(background_cv2, mask_inv_3ch_cv2)
|
151 |
+
|
152 |
+
# Combine the person and the new background
|
153 |
+
combined_cv2 = cv2.add(person_cv2, background_extracted_cv2)
|
154 |
+
|
155 |
+
# Refine edges using Gaussian Blur (feathering technique)
|
156 |
+
blurred_combined_cv2 = cv2.GaussianBlur(combined_cv2, (5, 5), 0)
|
157 |
+
|
158 |
+
# Convert the result back to PIL format
|
159 |
+
combined_pil = cls.cv2_to_pil(blurred_combined_cv2)
|
160 |
+
|
161 |
+
|
162 |
+
"""
|
163 |
+
# Post-processing: Adjust brightness, contrast, etc. (optional)
|
164 |
+
enhancer = ImageEnhance.Contrast(combined_pil)
|
165 |
+
post_processed_pil = enhancer.enhance(1.2) # Adjust contrast
|
166 |
+
enhancer = ImageEnhance.Brightness(post_processed_pil)
|
167 |
+
post_processed_pil = enhancer.enhance(1.2) # Adjust brightness
|
168 |
+
"""
|
169 |
+
|
170 |
+
|
171 |
+
# Save the final image
|
172 |
+
# post_processed_pil.save('path_to_save_final_image_1.png')
|
173 |
+
|
174 |
+
# Display the images (optional)
|
175 |
+
#foreground_pil.show(title="Foreground")
|
176 |
+
#background_pil.show(title="Background")
|
177 |
+
#mask_pil.show(title="Mask")
|
178 |
+
#combined_pil.show(title="Combined")
|
179 |
+
# post_processed_pil.show(title="Post Processed")
|
180 |
+
|
181 |
+
return combined_pil
|
182 |
+
|
183 |
+
@classmethod
|
184 |
+
def replace_background(cls, foreground_img_path: str, background_img_path: str):
|
185 |
+
# Load the input image (with alpha channel) and the background image
|
186 |
+
#input_image = cv2.imread(foreground_img_path, cv2.IMREAD_UNCHANGED)
|
187 |
+
input_image = cv2.imread(foreground_img_path)
|
188 |
+
background_image = cv2.imread(background_img_path)
|
189 |
+
|
190 |
+
# Ensure the input image has an alpha channel
|
191 |
+
if input_image.shape[2] != 4:
|
192 |
+
raise ValueError("Input image must have an alpha channel")
|
193 |
+
|
194 |
+
# Extract the alpha channel
|
195 |
+
alpha_channel = input_image[:, :, 3]
|
196 |
+
|
197 |
+
# Resize the background image to match the input image dimensions
|
198 |
+
background_image = cv2.resize(background_image, (input_image.shape[1], input_image.shape[0]))
|
199 |
+
|
200 |
+
# Convert alpha channel to 3 channels
|
201 |
+
alpha_channel_3ch = cv2.cvtColor(alpha_channel, cv2.COLOR_GRAY2BGR)
|
202 |
+
alpha_channel_3ch = alpha_channel_3ch / 255.0 # Normalize to 0-1
|
203 |
+
|
204 |
+
# Extract the BGR channels of the input image
|
205 |
+
input_bgr = input_image[:, :, :3]
|
206 |
+
|
207 |
+
# Blend the images using the alpha channel
|
208 |
+
foreground = cv2.multiply(alpha_channel_3ch, input_bgr.astype(float))
|
209 |
+
background = cv2.multiply(1.0 - alpha_channel_3ch, background_image.astype(float))
|
210 |
+
combined_image = cv2.add(foreground, background).astype(np.uint8)
|
211 |
+
|
212 |
+
# Save and display the result
|
213 |
+
cv2.imwrite('path_to_save_combined_image.png', combined_image)
|
214 |
+
cv2.imshow('Combined Image', combined_image)
|
215 |
+
cv2.waitKey(0)
|
216 |
+
cv2.destroyAllWindows()
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
# Function to convert PIL Image to OpenCV format
|
221 |
+
@classmethod
|
222 |
+
def pil_to_cv2(cls, pil_image):
|
223 |
+
open_cv_image = np.array(pil_image)
|
224 |
+
# Convert RGB to BGR if it's a 3-channel image
|
225 |
+
if len(open_cv_image.shape) == 3:
|
226 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
227 |
+
return open_cv_image
|
228 |
+
|
229 |
+
# Function to convert OpenCV format to PIL Image
|
230 |
+
@classmethod
|
231 |
+
def cv2_to_pil(cls, cv2_image):
|
232 |
+
# Convert BGR to RGB if it's a 3-channel image
|
233 |
+
if len(cv2_image.shape) == 3:
|
234 |
+
cv2_image = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)
|
235 |
+
pil_image = Image.fromarray(cv2_image)
|
236 |
+
return pil_image
|