test update code
Browse files- .gitignore +2 -0
- app.py +286 -191
- app_demo.py +204 -0
- src/about.py +1 -1
.gitignore
CHANGED
@@ -11,3 +11,5 @@ eval-results/
|
|
11 |
eval-queue-bk/
|
12 |
eval-results-bk/
|
13 |
logs/
|
|
|
|
|
|
11 |
eval-queue-bk/
|
12 |
eval-results-bk/
|
13 |
logs/
|
14 |
+
|
15 |
+
.DS_Store
|
app.py
CHANGED
@@ -1,204 +1,299 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
-
from
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
|
7 |
-
|
8 |
-
CITATION_BUTTON_LABEL,
|
9 |
-
CITATION_BUTTON_TEXT,
|
10 |
-
EVALUATION_QUEUE_TEXT,
|
11 |
-
INTRODUCTION_TEXT,
|
12 |
-
LLM_BENCHMARKS_TEXT,
|
13 |
-
TITLE,
|
14 |
-
)
|
15 |
-
from src.display.css_html_js import custom_css
|
16 |
-
from src.display.utils import (
|
17 |
-
BENCHMARK_COLS,
|
18 |
-
COLS,
|
19 |
-
EVAL_COLS,
|
20 |
-
EVAL_TYPES,
|
21 |
-
AutoEvalColumn,
|
22 |
-
ModelType,
|
23 |
-
fields,
|
24 |
-
WeightType,
|
25 |
-
Precision
|
26 |
-
)
|
27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
-
from src.submission.submit import add_new_eval
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
|
|
91 |
|
92 |
demo = gr.Blocks(css=custom_css)
|
93 |
with demo:
|
94 |
gr.HTML(TITLE)
|
95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
|
|
96 |
|
97 |
-
|
98 |
-
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
-
|
101 |
-
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
-
|
104 |
-
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
105 |
-
with gr.Column():
|
106 |
-
with gr.Row():
|
107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
with gr.Accordion(
|
111 |
-
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
-
open=False,
|
113 |
-
):
|
114 |
-
with gr.Row():
|
115 |
-
finished_eval_table = gr.components.Dataframe(
|
116 |
-
value=finished_eval_queue_df,
|
117 |
-
headers=EVAL_COLS,
|
118 |
-
datatype=EVAL_TYPES,
|
119 |
-
row_count=5,
|
120 |
-
)
|
121 |
-
with gr.Accordion(
|
122 |
-
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
-
open=False,
|
124 |
-
):
|
125 |
-
with gr.Row():
|
126 |
-
running_eval_table = gr.components.Dataframe(
|
127 |
-
value=running_eval_queue_df,
|
128 |
-
headers=EVAL_COLS,
|
129 |
-
datatype=EVAL_TYPES,
|
130 |
-
row_count=5,
|
131 |
-
)
|
132 |
-
|
133 |
-
with gr.Accordion(
|
134 |
-
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
-
open=False,
|
136 |
-
):
|
137 |
-
with gr.Row():
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
-
with gr.Row():
|
145 |
-
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
-
label="Model type",
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
-
)
|
158 |
-
|
159 |
-
with gr.Column():
|
160 |
-
precision = gr.Dropdown(
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
-
|
176 |
-
submit_button = gr.Button("Submit Eval")
|
177 |
-
submission_result = gr.Markdown()
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
-
|
191 |
-
with gr.Row():
|
192 |
-
with gr.Accordion("π Citation", open=False):
|
193 |
-
citation_button = gr.Textbox(
|
194 |
-
value=CITATION_BUTTON_TEXT,
|
195 |
-
label=CITATION_BUTTON_LABEL,
|
196 |
-
lines=20,
|
197 |
-
elem_id="citation-button",
|
198 |
-
show_copy_button=True,
|
199 |
-
)
|
200 |
-
|
201 |
-
scheduler = BackgroundScheduler()
|
202 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
-
scheduler.start()
|
204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
+
from css_html_js import custom_css
|
|
|
4 |
|
5 |
+
TITLE = """<h1 align="center" id="space-title">π²πΎ Malay LLM Leaderboard</h1>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
INTRODUCTION_TEXT = """
|
8 |
+
π The π²πΎ Malay LLM Leaderboard aims to track, rank and evaluate open LLMs on Malay tasks. All notebooks at https://github.com/mesolitica/llm-benchmarks, feel free to submit your own score at https://huggingface.co/spaces/mesolitica/malay-llm-leaderboard/discussions with link to the notebook.
|
9 |
+
## Dataset
|
10 |
+
π We evaluate models based on 3 datasets,
|
11 |
+
1. BM-PT3 Paper 1, contains 54 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/BM-pt3
|
12 |
+
- This test is for 15 years old Malaysia student, it is about reading comprehension and general knowledge for malay language.
|
13 |
+
2. Tatabahasa, contains 349 questions, https://github.com/mesolitica/malaysian-dataset/tree/master/llm-benchmark/tatabahasabm.tripod.com
|
14 |
+
- This test is general test for malay grammar.
|
15 |
+
3. General high school science questions, contains 323 questions, https://huggingface.co/datasets/mesolitica/mysoalan.com-qa
|
16 |
+
- This test is general test for science.
|
17 |
+
4. Translated MMLU, https://huggingface.co/datasets/mesolitica/translated-MMLU
|
18 |
+
- This test is to test general knowledge, originally from MMLU.
|
19 |
+
## Contributions
|
20 |
+
1. Claude 1.3 and 2.0 Tatabahasa contributed by https://www.linkedin.com/in/fahim-surani
|
21 |
+
2. Claude 3.0 contributed by https://github.com/theblackcat102, https://huggingface.co/theblackcat102
|
22 |
+
## Tagging
|
23 |
+
π’ pretrained β instruction-tuned π¦ close sourced
|
24 |
+
"""
|
25 |
|
26 |
+
close_source = [
|
27 |
+
{
|
28 |
+
'T': 'π¦',
|
29 |
+
'model': 'claude-3-opus-20240229',
|
30 |
+
'BM-PT3 0-shot': 57.41,
|
31 |
+
'BM-PT3 1-shot': 53.70,
|
32 |
+
'BM-PT3 3-shots': 62.96,
|
33 |
+
'Tatabahasa 0-shot': 77.08,
|
34 |
+
'Tatabahasa 1-shot': 73.93,
|
35 |
+
'Tatabahasa 3-shots': 75.64,
|
36 |
+
},
|
37 |
+
{
|
38 |
+
'T': 'π¦',
|
39 |
+
'model': 'claude-3-sonnet-20240229',
|
40 |
+
'BM-PT3 0-shot': 48.15,
|
41 |
+
'BM-PT3 1-shot': 50.00,
|
42 |
+
'BM-PT3 3-shots': 37.04,
|
43 |
+
'Tatabahasa 0-shot': 65.90,
|
44 |
+
'Tatabahasa 1-shot': 38.40,
|
45 |
+
'Tatabahasa 3-shots': 40.97,
|
46 |
+
},
|
47 |
+
{
|
48 |
+
'T': 'π¦',
|
49 |
+
'model': 'claude-3-haiku-20240307',
|
50 |
+
'BM-PT3 0-shot': 48.15,
|
51 |
+
'BM-PT3 1-shot': 50.00,
|
52 |
+
'BM-PT3 3-shots': 50.00,
|
53 |
+
'Tatabahasa 0-shot': 62.75,
|
54 |
+
'Tatabahasa 1-shot': 49.86,
|
55 |
+
'Tatabahasa 3-shots': 24.07,
|
56 |
+
},
|
57 |
+
{
|
58 |
+
'T': 'π¦',
|
59 |
+
'model': 'AWS Bedrock Claude 1.3',
|
60 |
+
'Tatabahasa 0-shot': 60.650887573964496,
|
61 |
+
'Tatabahasa 1-shot': 62.46418338108882,
|
62 |
+
'Tatabahasa 3-shots': 67.34104046242774,
|
63 |
+
},
|
64 |
+
{
|
65 |
+
'T': 'π¦',
|
66 |
+
'model': 'AWS Bedrock Claude 2',
|
67 |
+
'Tatabahasa 0-shot': 61.702127659574465,
|
68 |
+
'Tatabahasa 1-shot': 60.17191977077364,
|
69 |
+
'Tatabahasa 3-shots': 59.598853868194844,
|
70 |
+
},
|
71 |
+
{
|
72 |
+
'T': 'π¦',
|
73 |
+
'model': 'gpt-4-1106-preview',
|
74 |
+
'BM-PT3 0-shot': 51.85185185185185,
|
75 |
+
'BM-PT3 1-shot': 66.66666666666666,
|
76 |
+
'BM-PT3 3-shots': 55.55555555555556,
|
77 |
+
'Tatabahasa 0-shot': 75.64469914040114,
|
78 |
+
'Tatabahasa 1-shot': 73.63896848137536,
|
79 |
+
'Tatabahasa 3-shots': 75.64469914040114,
|
80 |
+
},
|
81 |
+
{
|
82 |
+
'T': 'π¦',
|
83 |
+
'model': 'gpt-3.5-turbo-0613',
|
84 |
+
'BM-PT3 0-shot': 36.53846153846153,
|
85 |
+
'BM-PT3 1-shot': 28.846153846153843,
|
86 |
+
'BM-PT3 3-shots': 24.528301886792452,
|
87 |
+
'Tatabahasa 0-shot': 59.530791788856305,
|
88 |
+
'Tatabahasa 1-shot': 60.80691642651297,
|
89 |
+
'Tatabahasa 3-shots': 63.03724928366762,
|
90 |
+
},
|
91 |
+
]
|
92 |
|
93 |
+
open_source = [
|
94 |
+
{
|
95 |
+
'T': 'π’',
|
96 |
+
'model': '[meta-llama/llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf)',
|
97 |
+
'Tatabahasa 0-shot': 24.355300859598856,
|
98 |
+
'Tatabahasa 1-shot': 28.08022922636103,
|
99 |
+
'Tatabahasa 3-shots': 24.641833810888254,
|
100 |
+
},
|
101 |
+
{
|
102 |
+
'T': 'π’',
|
103 |
+
'model': '[mesolitica/tinyllama-1.1b-4096-fpf](https://huggingface.co/mesolitica/tinyllama-1.1b-4096-fpf)',
|
104 |
+
'Tatabahasa 0-shot': 23.248407643312103,
|
105 |
+
'Tatabahasa 1-shot': 27.22063037249284,
|
106 |
+
'Tatabahasa 3-shots': 24.355300859598856,
|
107 |
+
},
|
108 |
+
{
|
109 |
+
'T': 'π’',
|
110 |
+
'model': '[mesolitica/malaysian-llama2-7b-32k](https://huggingface.co/mesolitica/llama-7b-hf-32768-fpf)',
|
111 |
+
'BM-PT3 0-shot': 20.37037037037037,
|
112 |
+
'BM-PT3 1-shot': 20.37037037037037,
|
113 |
+
'BM-PT3 3-shots': 29.629629629629626,
|
114 |
+
'Tatabahasa 0-shot': 17.765042979942695,
|
115 |
+
'Tatabahasa 1-shot': 24.068767908309454,
|
116 |
+
'Tatabahasa 3-shots': 27.507163323782237,
|
117 |
+
},
|
118 |
+
{
|
119 |
+
'T': 'β',
|
120 |
+
'model': '[mesolitica/malaysian-llama2-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-7b-32k-instructions-v2)',
|
121 |
+
'BM-PT3 0-shot': 33.33333333333333,
|
122 |
+
'BM-PT3 1-shot': 37.03703703703704,
|
123 |
+
'BM-PT3 3-shots': 35.18518518518518,
|
124 |
+
'Tatabahasa 0-shot': 59.31232091690545,
|
125 |
+
'Tatabahasa 1-shot': 53.86819484240688,
|
126 |
+
'Tatabahasa 3-shots': 45.55873925501432,
|
127 |
+
},
|
128 |
+
{
|
129 |
+
'T': 'π’',
|
130 |
+
'model': '[mesolitica/malaysian-llama2-13b-32k](https://huggingface.co/mesolitica/llama-13b-hf-32768-fpf)',
|
131 |
+
'BM-PT3 0-shot': 33.33333333333333,
|
132 |
+
'BM-PT3 1-shot': 20.37037037037037,
|
133 |
+
'BM-PT3 3-shots': 31.48148148148148,
|
134 |
+
'Tatabahasa 0-shot': 26.07449856733524,
|
135 |
+
'Tatabahasa 1-shot': 25.214899713467048,
|
136 |
+
'Tatabahasa 3-shots': 24.355300859598856,
|
137 |
+
},
|
138 |
+
{
|
139 |
+
'T': 'β',
|
140 |
+
'model': '[mistralai/malaysian-llama2-13b-32k-instructions](https://huggingface.co/mesolitica/malaysian-llama2-13b-32k-instructions)',
|
141 |
+
'BM-PT3 0-shot': 28.57142857142857,
|
142 |
+
'BM-PT3 1-shot': 12.244897959183673,
|
143 |
+
'BM-PT3 3-shots': 17.307692307692307,
|
144 |
+
},
|
145 |
+
{
|
146 |
+
'T': 'π’',
|
147 |
+
'model': '[mistralai/mistral-7b](https://huggingface.co/mistralai/Mistral-7B-v0.1)',
|
148 |
+
'Tatabahasa 0-shot': 28.939828080229223,
|
149 |
+
'Tatabahasa 1-shot': 34.38395415472779,
|
150 |
+
'Tatabahasa 3-shots': 32.95128939828081,
|
151 |
+
},
|
152 |
+
{
|
153 |
+
'T': 'π’',
|
154 |
+
'model': '[mesolitica/malaysian-mistral-7b-4k](https://huggingface.co/mesolitica/mistral-7b-4096-fpf)',
|
155 |
+
'BM-PT3 0-shot': 20.37037037037037,
|
156 |
+
'BM-PT3 1-shot': 22.22222222222222,
|
157 |
+
'BM-PT3 3-shots': 33.33333333333333,
|
158 |
+
'Tatabahasa 0-shot': 21.48997134670487,
|
159 |
+
'Tatabahasa 1-shot': 28.939828080229223,
|
160 |
+
'Tatabahasa 3-shots': 24.641833810888254,
|
161 |
+
},
|
162 |
+
{
|
163 |
+
'T': 'π’',
|
164 |
+
'model': '[mesolitica/malaysian-mistral-7b-32k](https://huggingface.co/mesolitica/mistral-7b-32768-fpf)',
|
165 |
+
'BM-PT3 0-shot': 16.666666666666664,
|
166 |
+
'BM-PT3 1-shot': 16.666666666666664,
|
167 |
+
'BM-PT3 3-shots': 25.925925925925924,
|
168 |
+
'Tatabahasa 0-shot': 18.624641833810887,
|
169 |
+
'Tatabahasa 1-shot': 24.355300859598856,
|
170 |
+
'Tatabahasa 3-shots': 28.653295128939828,
|
171 |
+
},
|
172 |
+
{
|
173 |
+
'T': 'β',
|
174 |
+
'model': '[mesolitica/malaysian-mistral-7b-32k-instructions](https://huggingface.co/mesolitica/malaysian-mistral-7b-32k-instructions)',
|
175 |
+
'BM-PT3 0-shot': 40.74074074074074,
|
176 |
+
'BM-PT3 1-shot': 33.33333333333333,
|
177 |
+
'BM-PT3 3-shots': 37.03703703703704,
|
178 |
+
'Tatabahasa 0-shot': 65.32951289398281,
|
179 |
+
'Tatabahasa 1-shot': 57.306590257879655,
|
180 |
+
'Tatabahasa 3-shots': 56.446991404011456,
|
181 |
+
},
|
182 |
+
{
|
183 |
+
'T': 'β',
|
184 |
+
'model': '[mesolitica/malaysian-mistral-7b-32k-instructions-v4](https://huggingface.co/mesolitica/malaysian-mistral-7b-32k-instructions)',
|
185 |
+
'BM-PT3 0-shot': 35.18518518518518,
|
186 |
+
'BM-PT3 1-shot': 31.48148148148148,
|
187 |
+
'BM-PT3 3-shots': 33.33333333333333,
|
188 |
+
'Tatabahasa 0-shot': 66.4756446991404,
|
189 |
+
'Tatabahasa 1-shot': 54.15472779369628,
|
190 |
+
'Tatabahasa 3-shots': 49.8567335243553,
|
191 |
+
},
|
192 |
+
{
|
193 |
+
'T': 'π’',
|
194 |
+
'model': '[aisingapore/sealion3b](https://huggingface.co/aisingapore/sealion3b)',
|
195 |
+
'BM-PT3 0-shot': 20.37037037037037,
|
196 |
+
'BM-PT3 1-shot': 25.925925925925924,
|
197 |
+
'BM-PT3 3-shots': 31.48148148148148,
|
198 |
+
'Tatabahasa 0-shot': 21.776504297994272,
|
199 |
+
'Tatabahasa 1-shot': 21.776504297994272,
|
200 |
+
'Tatabahasa 3-shots': 24.641833810888254,
|
201 |
+
},
|
202 |
+
{
|
203 |
+
'T': 'π’',
|
204 |
+
'model': '[aisingapore/sealion7b](https://huggingface.co/aisingapore/sealion7b)',
|
205 |
+
'BM-PT3 0-shot': 20.37037037037037,
|
206 |
+
'BM-PT3 1-shot': 24.074074074074073,
|
207 |
+
'BM-PT3 3-shots': 33.33333333333333,
|
208 |
+
'Tatabahasa 0-shot': 25.787965616045845,
|
209 |
+
'Tatabahasa 1-shot': 27.507163323782237,
|
210 |
+
'Tatabahasa 3-shots': 26.07449856733524,
|
211 |
+
},
|
212 |
+
{
|
213 |
+
'T': 'π’',
|
214 |
+
'model': '[mesolitica/mallam-1.1B-4096](https://huggingface.co/mesolitica/mallam-1.1B-4096)',
|
215 |
+
'Tatabahasa 0-shot': 25.757575757575758,
|
216 |
+
'Tatabahasa 1-shot': 25.787965616045845,
|
217 |
+
'Tatabahasa 3-shots': 28.08022922636103,
|
218 |
+
},
|
219 |
+
{
|
220 |
+
'T': 'π’',
|
221 |
+
'model': '[mesolitica/mallam-3B-4096](https://huggingface.co/mesolitica/mallam-3B-4096)',
|
222 |
+
'Tatabahasa 0-shot': 24.567474048442904,
|
223 |
+
'Tatabahasa 1-shot': 24.641833810888254,
|
224 |
+
'Tatabahasa 3-shots': 28.653295128939828,
|
225 |
+
},
|
226 |
+
{
|
227 |
+
'T': 'π’',
|
228 |
+
'model': '[mesolitica/mallam-5B-4096](https://huggingface.co/mesolitica/mallam-5B-4096)',
|
229 |
+
'Tatabahasa 0-shot': 24.074074074074073,
|
230 |
+
'Tatabahasa 1-shot': 27.793696275071632,
|
231 |
+
'Tatabahasa 3-shots': 28.653295128939828,
|
232 |
+
},
|
233 |
+
{
|
234 |
+
'T': 'π’',
|
235 |
+
'model': '[sail/Sailor-0.5B](https://huggingface.co/sail/Sailor-0.5B)',
|
236 |
+
'Tatabahasa 0-shot': 17.191977077363894,
|
237 |
+
'Tatabahasa 1-shot': 23.78223495702006,
|
238 |
+
'Tatabahasa 3-shots': 25.501432664756447,
|
239 |
+
},
|
240 |
+
{
|
241 |
+
'T': 'π’',
|
242 |
+
'model': '[sail/Sailor-1.8B](https://huggingface.co/sail/Sailor-1.8B)',
|
243 |
+
'Tatabahasa 0-shot': 29.512893982808023,
|
244 |
+
'Tatabahasa 1-shot': 27.507163323782237,
|
245 |
+
'Tatabahasa 3-shots': 24.92836676217765,
|
246 |
+
},
|
247 |
+
{
|
248 |
+
'T': 'π’',
|
249 |
+
'model': '[sail/Sailor-4B](https://huggingface.co/sail/Sailor-4B)',
|
250 |
+
'Tatabahasa 0-shot': 31.51862464183381,
|
251 |
+
'Tatabahasa 1-shot': 36.10315186246418,
|
252 |
+
'Tatabahasa 3-shots': 27.507163323782237,
|
253 |
+
},
|
254 |
+
{
|
255 |
+
'T': 'π’',
|
256 |
+
'model': '[sail/Sailor-7B](https://huggingface.co/sail/Sailor-7B)',
|
257 |
+
'Tatabahasa 0-shot': 55.30085959885387,
|
258 |
+
'Tatabahasa 1-shot': 54.72779369627507,
|
259 |
+
'Tatabahasa 3-shots': 59.02578796561605,
|
260 |
+
},
|
261 |
+
{
|
262 |
+
'T': 'π’',
|
263 |
+
'model': '[mesolitica/mallam-5B-4096](https://huggingface.co/mesolitica/mallam-5B-4096)',
|
264 |
+
'Tatabahasa 0-shot': 24.074074074074073,
|
265 |
+
'Tatabahasa 1-shot': 27.793696275071632,
|
266 |
+
'Tatabahasa 3-shots': 28.653295128939828,
|
267 |
+
},
|
268 |
+
{
|
269 |
+
'T': 'π’',
|
270 |
+
'model': '[mesolitica/gemma-2B-8192-fpf](https://huggingface.co/mesolitica/gemma-2B-8192-fpf)',
|
271 |
+
'Tatabahasa 0-shot': 14.613180515759314,
|
272 |
+
'Tatabahasa 1-shot': 25.501432664756447,
|
273 |
+
'Tatabahasa 3-shots': 23.49570200573066,
|
274 |
+
},
|
275 |
+
{
|
276 |
+
'T': 'π’',
|
277 |
+
'model': '[mesolitica/Qwen1.5-0.5B-4096-fpf](https://huggingface.co/mesolitica/Qwen1.5-0.5B-4096-fpf)',
|
278 |
+
'Tatabahasa 0-shot': 13.753581661891118,
|
279 |
+
'Tatabahasa 1-shot': 21.20343839541547,
|
280 |
+
'Tatabahasa 3-shots': 22.636103151862464,
|
281 |
+
},
|
282 |
+
{
|
283 |
+
'T': 'β',
|
284 |
+
'model': '[mesolitica/mallam-1.1b-20k-instructions](https://huggingface.co/mesolitica/mallam-1.1b-20k-instructions)',
|
285 |
+
'Tatabahasa 0-shot': 26.923076923076923,
|
286 |
+
'Tatabahasa 1-shot': 28.939828080229223,
|
287 |
+
'Tatabahasa 3-shots': 21.776504297994272,
|
288 |
+
},
|
289 |
+
]
|
290 |
|
291 |
+
data = pd.DataFrame(close_source + open_source)
|
292 |
|
293 |
demo = gr.Blocks(css=custom_css)
|
294 |
with demo:
|
295 |
gr.HTML(TITLE)
|
296 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
297 |
+
gr.DataFrame(data, datatype = 'markdown')
|
298 |
|
299 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_demo.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
+
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
|
7 |
+
from src.about import (
|
8 |
+
CITATION_BUTTON_LABEL,
|
9 |
+
CITATION_BUTTON_TEXT,
|
10 |
+
EVALUATION_QUEUE_TEXT,
|
11 |
+
INTRODUCTION_TEXT,
|
12 |
+
LLM_BENCHMARKS_TEXT,
|
13 |
+
TITLE,
|
14 |
+
)
|
15 |
+
from src.display.css_html_js import custom_css
|
16 |
+
from src.display.utils import (
|
17 |
+
BENCHMARK_COLS,
|
18 |
+
COLS,
|
19 |
+
EVAL_COLS,
|
20 |
+
EVAL_TYPES,
|
21 |
+
AutoEvalColumn,
|
22 |
+
ModelType,
|
23 |
+
fields,
|
24 |
+
WeightType,
|
25 |
+
Precision
|
26 |
+
)
|
27 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
+
from src.submission.submit import add_new_eval
|
30 |
+
|
31 |
+
|
32 |
+
def restart_space():
|
33 |
+
API.restart_space(repo_id=REPO_ID)
|
34 |
+
|
35 |
+
### Space initialisation
|
36 |
+
try:
|
37 |
+
print(EVAL_REQUESTS_PATH)
|
38 |
+
snapshot_download(
|
39 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
40 |
+
)
|
41 |
+
except Exception:
|
42 |
+
restart_space()
|
43 |
+
try:
|
44 |
+
print(EVAL_RESULTS_PATH)
|
45 |
+
snapshot_download(
|
46 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
+
)
|
48 |
+
except Exception:
|
49 |
+
restart_space()
|
50 |
+
|
51 |
+
|
52 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
+
|
54 |
+
(
|
55 |
+
finished_eval_queue_df,
|
56 |
+
running_eval_queue_df,
|
57 |
+
pending_eval_queue_df,
|
58 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
+
|
60 |
+
def init_leaderboard(dataframe):
|
61 |
+
if dataframe is None or dataframe.empty:
|
62 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
+
return Leaderboard(
|
64 |
+
value=dataframe,
|
65 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
66 |
+
select_columns=SelectColumns(
|
67 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
68 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
69 |
+
label="Select Columns to Display:",
|
70 |
+
),
|
71 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
72 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
+
filter_columns=[
|
74 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
+
ColumnFilter(
|
77 |
+
AutoEvalColumn.params.name,
|
78 |
+
type="slider",
|
79 |
+
min=0.01,
|
80 |
+
max=150,
|
81 |
+
label="Select the number of parameters (B)",
|
82 |
+
),
|
83 |
+
ColumnFilter(
|
84 |
+
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
+
),
|
86 |
+
],
|
87 |
+
bool_checkboxgroup_label="Hide models",
|
88 |
+
interactive=False,
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
demo = gr.Blocks(css=custom_css)
|
93 |
+
with demo:
|
94 |
+
gr.HTML(TITLE)
|
95 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
+
|
97 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
+
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
+
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
+
|
101 |
+
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
+
|
104 |
+
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
105 |
+
with gr.Column():
|
106 |
+
with gr.Row():
|
107 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
+
|
109 |
+
with gr.Column():
|
110 |
+
with gr.Accordion(
|
111 |
+
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
+
open=False,
|
113 |
+
):
|
114 |
+
with gr.Row():
|
115 |
+
finished_eval_table = gr.components.Dataframe(
|
116 |
+
value=finished_eval_queue_df,
|
117 |
+
headers=EVAL_COLS,
|
118 |
+
datatype=EVAL_TYPES,
|
119 |
+
row_count=5,
|
120 |
+
)
|
121 |
+
with gr.Accordion(
|
122 |
+
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
+
open=False,
|
124 |
+
):
|
125 |
+
with gr.Row():
|
126 |
+
running_eval_table = gr.components.Dataframe(
|
127 |
+
value=running_eval_queue_df,
|
128 |
+
headers=EVAL_COLS,
|
129 |
+
datatype=EVAL_TYPES,
|
130 |
+
row_count=5,
|
131 |
+
)
|
132 |
+
|
133 |
+
with gr.Accordion(
|
134 |
+
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
+
open=False,
|
136 |
+
):
|
137 |
+
with gr.Row():
|
138 |
+
pending_eval_table = gr.components.Dataframe(
|
139 |
+
value=pending_eval_queue_df,
|
140 |
+
headers=EVAL_COLS,
|
141 |
+
datatype=EVAL_TYPES,
|
142 |
+
row_count=5,
|
143 |
+
)
|
144 |
+
with gr.Row():
|
145 |
+
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
with gr.Column():
|
149 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
+
model_type = gr.Dropdown(
|
152 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
+
label="Model type",
|
154 |
+
multiselect=False,
|
155 |
+
value=None,
|
156 |
+
interactive=True,
|
157 |
+
)
|
158 |
+
|
159 |
+
with gr.Column():
|
160 |
+
precision = gr.Dropdown(
|
161 |
+
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
+
label="Precision",
|
163 |
+
multiselect=False,
|
164 |
+
value="float16",
|
165 |
+
interactive=True,
|
166 |
+
)
|
167 |
+
weight_type = gr.Dropdown(
|
168 |
+
choices=[i.value.name for i in WeightType],
|
169 |
+
label="Weights type",
|
170 |
+
multiselect=False,
|
171 |
+
value="Original",
|
172 |
+
interactive=True,
|
173 |
+
)
|
174 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
+
|
176 |
+
submit_button = gr.Button("Submit Eval")
|
177 |
+
submission_result = gr.Markdown()
|
178 |
+
submit_button.click(
|
179 |
+
add_new_eval,
|
180 |
+
[
|
181 |
+
model_name_textbox,
|
182 |
+
base_model_name_textbox,
|
183 |
+
revision_name_textbox,
|
184 |
+
precision,
|
185 |
+
weight_type,
|
186 |
+
model_type,
|
187 |
+
],
|
188 |
+
submission_result,
|
189 |
+
)
|
190 |
+
|
191 |
+
with gr.Row():
|
192 |
+
with gr.Accordion("π Citation", open=False):
|
193 |
+
citation_button = gr.Textbox(
|
194 |
+
value=CITATION_BUTTON_TEXT,
|
195 |
+
label=CITATION_BUTTON_LABEL,
|
196 |
+
lines=20,
|
197 |
+
elem_id="citation-button",
|
198 |
+
show_copy_button=True,
|
199 |
+
)
|
200 |
+
|
201 |
+
scheduler = BackgroundScheduler()
|
202 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
+
scheduler.start()
|
204 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/about.py
CHANGED
@@ -21,7 +21,7 @@ NUM_FEWSHOT = 0 # Change with your few shot
|
|
21 |
|
22 |
|
23 |
# Your leaderboard name
|
24 |
-
TITLE = """<h1 align="center" id="space-title">
|
25 |
|
26 |
# What does your leaderboard evaluate?
|
27 |
INTRODUCTION_TEXT = """
|
|
|
21 |
|
22 |
|
23 |
# Your leaderboard name
|
24 |
+
TITLE = """<h1 align="center" id="space-title">Thai Sentence Embedding Leaderboard</h1>"""
|
25 |
|
26 |
# What does your leaderboard evaluate?
|
27 |
INTRODUCTION_TEXT = """
|