OpenSpeech-TTS / app.py
pantelnm's picture
Update app.py
b6c1d35 verified
import streamlit as st
import edge_tts
import asyncio
import tempfile
import os
from typing import Dict
from collections import defaultdict
async def text_to_speech(text: str, voice: str) -> str:
output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file.name)
return output_file.name
async def list_voices() -> Dict[str, Dict]:
voices = await edge_tts.list_voices()
return {v['ShortName']: {'name': v['ShortName'], 'language': v['Locale']} for v in voices}
def process_voices(voices: Dict[str, Dict]) -> Dict[str, Dict[str, str]]:
processed_voices = defaultdict(dict)
for full_name, details in voices.items():
language = details['language']
speaker_name = full_name.split('-')[2].replace('Neural', '')
processed_voices[language][speaker_name] = full_name
return dict(processed_voices)
async def main():
st.title("OpenSpeech TTS")
st.write("An OpenAI compatible API to reproduce high fidelity speech fast, in minimal hardware")
st.write("Official Repo: https://github.com/PantelisDeveloping/openspeech-tts/tree/main")
# Get voices and process them
voices = await list_voices()
processed_voices = process_voices(voices)
# Text-to-Speech
st.header("Text-to-Speech")
text_input = st.text_area("Enter text to convert to speech:")
# Two-step voice selection
col1, col2 = st.columns(2)
with col1:
selected_language = st.selectbox("Select language:", list(processed_voices.keys()))
with col2:
selected_speaker = st.selectbox("Select speaker:", list(processed_voices[selected_language].keys()))
selected_voice = processed_voices[selected_language][selected_speaker]
if st.button("Generate Speech"):
if not text_input:
st.error("Please enter some text.")
else:
with st.spinner("Generating speech..."):
output_file = await text_to_speech(text_input, selected_voice)
st.audio(output_file, format='audio/mp3')
os.unlink(output_file) # Delete the temporary file
# List Available Voices
# st.header("Available Voices")
# for language, speakers in processed_voices.items():
# st.subheader(language)
# st.write(", ".join(speakers.keys()))
if __name__ == '__main__':
asyncio.run(main())