GreenGreta / app.py
paloma99's picture
Update app.py
54e474d verified
raw
history blame
1.12 kB
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import theme
import chatbot
theme = theme.Theme()
# Cell 1: Image Classification Model
image_pipeline = pipeline(task="image-classification", model="guillen/vit-basura-test1")
def predict_image(input_img):
predictions = image_pipeline(input_img)
return {p["label"]: p["score"] for p in predictions}
image_gradio_app = gr.Interface(
fn=predict_image,
inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"),
outputs=[gr.Label(label="Result")],
title="Green Greta",
theme=theme
)
# Cell 2: Chatbot Model
def qa_response(user_message, chat_history, context):
response = qa_chain.predict(user_message, chat_history, context=context)
return response
chatbot_gradio_app = gr.ChatInterface(
fn=qa_response,
title="Green Greta",
theme=theme
)
# Combine both interfaces into a single app
gr.TabbedInterface(
[image_gradio_app, chatbot_gradio_app],
tab_names=["Green Greta Image Classification","Green Greta Chat"],
theme=theme
).launch()