Spaces:
Runtime error
Runtime error
File size: 2,182 Bytes
53d6474 eb09c16 87bd002 1674572 6f8418a 87bd002 6f8418a 87bd002 6f8418a eb09c16 6f8418a 87bd002 1674572 6f8418a 87bd002 6f8418a 87bd002 6f8418a 1674572 4fbc0e8 1674572 4fbc0e8 f38d24e 4fbc0e8 f38d24e 4fbc0e8 f38d24e 1674572 f38d24e 1674572 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
# Cell 1: Image Classification Model
image_pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
def predict_image(input_img):
predictions = image_pipeline(input_img)
return input_img, {p["label"]: p["score"] for p in predictions}
image_gradio_app = gr.Interface(
fn=predict_image,
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
title="Hot Dog? Or Not?",
)
# Cell 2: Chatbot Model
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
chatbot_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
def predict_chatbot(input, history=[]):
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
history = chatbot_model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
response = tokenizer.decode(history[0]).split("")
response_tuples = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]
return response_tuples, history
chatbot_gradio_app = gr.Interface(
fn=predict_chatbot,
inputs=gr.Textbox(show_label=False, placeholder="Enter text and press enter"),
outputs=gr.Textbox(),
live=True,
title="Chatbot",
)
custom_html = """
<style>
body {
background-color: #00ff00; /* Light green background */
font-family: 'Arial', sans-serif; /* Modern sans-serif font */
}
.gr-tab-title {
color: #004d00; /* Dark green title color */
}
.gr-title {
color: #004d00; /* Dark green title color */
}
</style>
"""
# Add custom HTML to each Gradio interface
image_gradio_app.style(custom_html)
chatbot_gradio_app.style(custom_html)
# Combine both interfaces into a single app
gr.TabbedInterface(
[image_gradio_app, chatbot_gradio_app],
tab_names=["image", "chatbot"]
).launch() |