File size: 2,182 Bytes
53d6474
eb09c16
 
87bd002
1674572
6f8418a
87bd002
6f8418a
 
 
87bd002
6f8418a
eb09c16
6f8418a
 
 
 
87bd002
1674572
6f8418a
 
87bd002
6f8418a
 
87bd002
6f8418a
 
 
 
 
 
1674572
 
 
 
 
 
 
 
4fbc0e8
 
 
 
 
 
1674572
4fbc0e8
 
 
f38d24e
4fbc0e8
 
 
 
f38d24e
 
4fbc0e8
 
 
f38d24e
1674572
 
 
f38d24e
1674572
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch

# Cell 1: Image Classification Model
image_pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

def predict_image(input_img):
    predictions = image_pipeline(input_img)
    return input_img, {p["label"]: p["score"] for p in predictions} 

image_gradio_app = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
    title="Hot Dog? Or Not?",
)

# Cell 2: Chatbot Model
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
chatbot_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")

def predict_chatbot(input, history=[]):
    new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
    history = chatbot_model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
    response = tokenizer.decode(history[0]).split("")

    response_tuples = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]
    return response_tuples, history

chatbot_gradio_app = gr.Interface(
    fn=predict_chatbot,
    inputs=gr.Textbox(show_label=False, placeholder="Enter text and press enter"),
    outputs=gr.Textbox(),
    live=True,
    title="Chatbot",
)

custom_html = """
<style>
    body {
        background-color: #00ff00;  /* Light green background */
        font-family: 'Arial', sans-serif;  /* Modern sans-serif font */
    }

    .gr-tab-title {
        color: #004d00;  /* Dark green title color */
    }

    .gr-title {
        color: #004d00;  /* Dark green title color */
    }
</style>
"""

# Add custom HTML to each Gradio interface
image_gradio_app.style(custom_html)
chatbot_gradio_app.style(custom_html)

# Combine both interfaces into a single app
gr.TabbedInterface(
    [image_gradio_app, chatbot_gradio_app],
    tab_names=["image", "chatbot"]
).launch()