File size: 1,118 Bytes
53d6474
eb09c16
 
cad1126
54e474d
cad1126
 
87bd002
1674572
acf5da7
87bd002
6f8418a
 
dfef0b8
87bd002
6f8418a
eb09c16
a8cd504
acf5da7
 
2471c01
6f8418a
87bd002
1674572
87bd002
54e474d
 
 
6f8418a
f718f04
54e474d
302d1be
7880ed9
1674572
 
f718f04
 
 
302d1be
0930360
f718f04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import theme
import chatbot

theme = theme.Theme()

# Cell 1: Image Classification Model
image_pipeline = pipeline(task="image-classification", model="guillen/vit-basura-test1")

def predict_image(input_img):
    predictions = image_pipeline(input_img)
    return {p["label"]: p["score"] for p in predictions} 

image_gradio_app = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Label(label="Result")],
    title="Green Greta",
    theme=theme
)

# Cell 2: Chatbot Model

def qa_response(user_message, chat_history, context):
    response = qa_chain.predict(user_message, chat_history, context=context)
    return response

chatbot_gradio_app = gr.ChatInterface(
    fn=qa_response,
    title="Green Greta",
    theme=theme
)

# Combine both interfaces into a single app
gr.TabbedInterface(
    [image_gradio_app, chatbot_gradio_app],
    tab_names=["Green Greta Image Classification","Green Greta Chat"],
    theme=theme
).launch()