Spaces:
Runtime error
Runtime error
File size: 1,674 Bytes
53d6474 eb09c16 cad1126 87bd002 1674572 6f8418a 87bd002 6f8418a 87bd002 6f8418a eb09c16 6f8418a 2471c01 6f8418a 87bd002 1674572 6f8418a 87bd002 6f8418a 87bd002 6f8418a f718f04 1674572 f718f04 2471c01 1674572 f718f04 0930360 f718f04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import theme
theme = theme.Theme()
# Cell 1: Image Classification Model
image_pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
def predict_image(input_img):
predictions = image_pipeline(input_img)
return input_img, {p["label"]: p["score"] for p in predictions}
image_gradio_app = gr.Interface(
fn=predict_image,
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
title="Hot Dog? Or Not?",
theme=theme
)
# Cell 2: Chatbot Model
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
chatbot_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
def predict_chatbot(input, history=[]):
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
history = chatbot_model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
response = tokenizer.decode(history[0]).split("")
response_tuples = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]
return response_tuples, history
chatbot_gradio_app = gr.ChatInterface(
fn=predict_chatbot,
title="Greta",
theme=theme
)
# Combine both interfaces into a single app
gr.TabbedInterface(
[image_gradio_app, chatbot_gradio_app],
tab_names=["image","chatbot"],
theme=theme
).launch() |