|
from openai import OpenAI
|
|
class LlaMa3:
|
|
def __init__(self) -> None:
|
|
self.client = OpenAI(
|
|
base_url="https://integrate.api.nvidia.com/v1",
|
|
api_key="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"
|
|
)
|
|
self.name = "Llama3"
|
|
|
|
|
|
self.initial_prompt = """
|
|
Hello! I can assist you in making a decision. What decision would you like to make today?
|
|
Please describe the decision and provide any relevant details to help me understand.
|
|
"""
|
|
|
|
def chat(self, messages):
|
|
|
|
if len(messages) == 0:
|
|
messages.append({"role": "system", "content": self.initial_prompt})
|
|
|
|
|
|
completion = self.client.chat.completions.create(
|
|
model="nvidia/llama-3.1-nemotron-70b-instruct",
|
|
messages=messages,
|
|
temperature=0.5,
|
|
top_p=1,
|
|
max_tokens=1024,
|
|
stream=True
|
|
)
|
|
|
|
response = ""
|
|
for chunk in completion:
|
|
if chunk.choices[0].delta.content is not None:
|
|
response += chunk.choices[0].delta.content
|
|
|
|
return response
|
|
|