mini-nvs-solver / gradio_app.py
pablovela5620's picture
Upload gradio_app.py with huggingface_hub
2032b2a verified
raw
history blame
12.4 kB
try:
import spaces # type: ignore
IN_SPACES = True
except ImportError:
print("Not running on Zero")
IN_SPACES = False
import PIL
import PIL.Image
from PIL.Image import Image
from mini_nvs_solver.rr_logging_utils import (
log_camera,
create_svd_blueprint,
)
from mini_nvs_solver.pose_utils import generate_camera_parameters
from mini_nvs_solver.camera_parameters import PinholeParameters
from mini_nvs_solver.depth_utils import image_to_depth
from mini_nvs_solver.image_warping import image_depth_warping
from mini_nvs_solver.sigma_utils import load_lambda_ts
from mini_nvs_solver.nerfstudio_data import frames_to_nerfstudio
import gradio as gr
from gradio_rerun import Rerun
import rerun as rr
import rerun.blueprint as rrb
import numpy as np
import PIL
import torch
from pathlib import Path
from queue import SimpleQueue
import trimesh
import subprocess
import mmcv
from uuid import uuid4
from typing import Final, Literal
from jaxtyping import Float64, Float32, UInt8
from monopriors.relative_depth_models import (
get_relative_predictor,
)
from mini_nvs_solver.custom_diffusers_pipeline.svd import StableVideoDiffusionPipeline
from mini_nvs_solver.custom_diffusers_pipeline.scheduler import EulerDiscreteScheduler
SVD_HEIGHT: Final[int] = 576
SVD_WIDTH: Final[int] = 1024
NEAR: Final[float] = 0.0001
FAR: Final[float] = 500.0
if gr.NO_RELOAD:
DepthAnythingV2Predictor = get_relative_predictor("DepthAnythingV2Predictor")(
device="cuda"
)
SVD_PIPE = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt",
torch_dtype=torch.float16,
variant="fp16",
)
SVD_PIPE.to("cuda")
scheduler = EulerDiscreteScheduler.from_config(SVD_PIPE.scheduler.config)
SVD_PIPE.scheduler = scheduler
def svd_render_threaded(
image_o: PIL.Image.Image,
masks: Float64[torch.Tensor, "b 72 128"],
cond_image: PIL.Image.Image,
lambda_ts: Float64[torch.Tensor, "n b"],
num_denoise_iters: Literal[2, 25, 50, 100],
weight_clamp: float,
log_queue: SimpleQueue | None = None,
):
frames: list[PIL.Image.Image] = SVD_PIPE(
[image_o],
log_queue=log_queue,
temp_cond=cond_image,
mask=masks,
lambda_ts=lambda_ts,
weight_clamp=weight_clamp,
num_frames=25,
decode_chunk_size=8,
num_inference_steps=num_denoise_iters,
).frames[0]
if log_queue is not None:
log_queue.put(frames)
def svd_render(
image_o: PIL.Image.Image,
masks: Float64[torch.Tensor, "b 72 128"],
cond_image: PIL.Image.Image,
lambda_ts: Float64[torch.Tensor, "n b"],
num_denoise_iters: Literal[2, 25, 50, 100],
weight_clamp: float,
log_queue: SimpleQueue | None = None,
):
frames: list[PIL.Image.Image] = SVD_PIPE(
[image_o],
log_queue=None,
temp_cond=cond_image,
mask=masks,
lambda_ts=lambda_ts,
weight_clamp=weight_clamp,
num_frames=25,
decode_chunk_size=8,
num_inference_steps=num_denoise_iters,
).frames[0]
return frames
if IN_SPACES:
svd_render = spaces.GPU(svd_render)
image_to_depth = spaces.GPU(image_to_depth, duration=400)
@rr.thread_local_stream("warped_image")
def gradio_warped_image(
image_path: str,
num_denoise_iters: Literal[2, 25, 50, 100],
direction: Literal["left", "right"],
degrees_per_frame: int | float,
major_radius: float = 60.0,
minor_radius: float = 70.0,
num_frames: int = 25, # StableDiffusion Video generates 25 frames
progress=gr.Progress(track_tqdm=True),
):
# ensure that the degrees per frame is a float
degrees_per_frame = float(degrees_per_frame)
image_path: Path = Path(image_path) if isinstance(image_path, str) else image_path
assert image_path.exists(), f"Image file not found: {image_path}"
save_path: Path = image_path.parent / f"{image_path.stem}_{uuid4()}"
# setup rerun logging
stream = rr.binary_stream()
parent_log_path = Path("world")
rr.log(f"{parent_log_path}", rr.ViewCoordinates.LDB, static=True)
blueprint: rrb.Blueprint = create_svd_blueprint(parent_log_path)
rr.send_blueprint(blueprint)
# Load image and resize to SVD dimensions
rgb_original: Image = PIL.Image.open(image_path)
rgb_resized: Image = rgb_original.resize(
(SVD_WIDTH, SVD_HEIGHT), PIL.Image.Resampling.NEAREST
)
rgb_np_original: UInt8[np.ndarray, "h w 3"] = np.array(rgb_original)
rgb_np_hw3: UInt8[np.ndarray, "h w 3"] = np.array(rgb_resized)
# generate initial camera parameters for video trajectory
camera_list: list[PinholeParameters] = generate_camera_parameters(
num_frames=num_frames,
image_width=SVD_WIDTH,
image_height=SVD_HEIGHT,
degrees_per_frame=degrees_per_frame,
major_radius=major_radius,
minor_radius=minor_radius,
direction=direction,
)
assert len(camera_list) == num_frames, "Number of camera parameters mismatch"
# Estimate depth map and pointcloud for the input image
depth: Float32[np.ndarray, "h w"]
trimesh_pc: trimesh.PointCloud
depth_original: Float32[np.ndarray, "original_h original_w"]
trimesh_pc_original: trimesh.PointCloud
depth, trimesh_pc, depth_original, trimesh_pc_original = image_to_depth(
rgb_np_original=rgb_np_original,
rgb_np_hw3=rgb_np_hw3,
cam_params=camera_list[0],
near=NEAR,
far=FAR,
depth_predictor=DepthAnythingV2Predictor,
)
rr.log(
f"{parent_log_path}/point_cloud",
rr.Points3D(
positions=trimesh_pc.vertices,
colors=trimesh_pc.colors,
),
static=True,
)
start_cam: PinholeParameters = camera_list[0]
cond_image: list[PIL.Image.Image] = []
masks: list[Float64[torch.Tensor, "1 72 128"]] = []
# Perform image depth warping to generated camera parameters
current_cam: PinholeParameters
for frame_id, current_cam in enumerate(camera_list):
rr.set_time_sequence("frame_id", frame_id)
if frame_id == 0:
cam_log_path: Path = parent_log_path / "warped_camera"
log_camera(cam_log_path, current_cam, rgb_np_hw3, depth)
else:
# clear logged depth from the previous frame
rr.log(f"{cam_log_path}/pinhole/depth", rr.Clear(recursive=False))
cam_log_path: Path = parent_log_path / "warped_camera"
# do image warping
warped_frame2, mask_erosion_tensor = image_depth_warping(
image=rgb_np_hw3,
depth=depth,
cam_T_world_44_s=start_cam.extrinsics.cam_T_world,
cam_T_world_44_t=current_cam.extrinsics.cam_T_world,
K=current_cam.intrinsics.k_matrix,
)
cond_image.append(warped_frame2)
masks.append(mask_erosion_tensor)
log_camera(cam_log_path, current_cam, np.asarray(warped_frame2))
yield stream.read(), None, [], ""
masks: Float64[torch.Tensor, "b 72 128"] = torch.cat(masks)
# load sigmas to optimize for timestep
progress(0.1, desc="Optimizing timesteps for diffusion")
lambda_ts: Float64[torch.Tensor, "n b"] = load_lambda_ts(num_denoise_iters)
progress(0.15, desc="Starting diffusion")
# to allow logging from a separate thread
# log_queue: SimpleQueue = SimpleQueue()
# handle = threading.Thread(
# target=svd_render_threaded,
# kwargs={
# "image_o": rgb_resized,
# "masks": masks,
# "cond_image": cond_image,
# "lambda_ts": lambda_ts,
# "num_denoise_iters": num_denoise_iters,
# "weight_clamp": 0.2,
# "log_queue": None,
# },
# )
# handle.start()
# i = 0
# while True:
# msg = log_queue.get()
# match msg:
# case frames if all(isinstance(frame, PIL.Image.Image) for frame in frames):
# break
# case entity_path, entity, times:
# i += 1
# rr.reset_time()
# for timeline, time in times:
# if isinstance(time, int):
# rr.set_time_sequence(timeline, time)
# else:
# rr.set_time_seconds(timeline, time)
# static = False
# if entity_path == "diffusion_step":
# static = True
# rr.log(entity_path, entity, static=static)
# yield stream.read(), None, [], f"{i} out of {num_denoise_iters}"
# case _:
# assert False
# handle.join()
frames = svd_render(
image_o=rgb_resized,
masks=masks,
cond_image=cond_image,
lambda_ts=lambda_ts,
num_denoise_iters=num_denoise_iters,
weight_clamp=0.2,
log_queue=None,
)
# all frames but the first one
frame: np.ndarray
for frame_id, (frame, cam_pararms) in enumerate(zip(frames, camera_list)):
# add one since the first frame is the original image
rr.set_time_sequence("frame_id", frame_id)
cam_log_path = parent_log_path / "generated_camera"
generated_rgb_np: UInt8[np.ndarray, "h w 3"] = np.array(frame)
log_camera(cam_log_path, cam_pararms, generated_rgb_np, depth=None)
yield stream.read(), None, [], "finished"
frames_to_nerfstudio(
rgb_np_original, frames, trimesh_pc_original, camera_list, save_path
)
# zip up nerfstudio data
zip_file_path = save_path / "nerfstudio.zip"
progress(0.95, desc="Zipping up camera data in nerfstudio format")
# Run the zip command
subprocess.run(["zip", "-r", str(zip_file_path), str(save_path)], check=True)
video_file_path = save_path / "output.mp4"
mmcv.frames2video(str(save_path), str(video_file_path), fps=7)
print(f"Video saved to {video_file_path}")
yield stream.read(), video_file_path, [str(zip_file_path)], "finished"
with gr.Blocks() as demo:
with gr.Tab("Streaming"):
with gr.Row():
img = gr.Image(interactive=True, label="Image", type="filepath")
with gr.Tab(label="Settings"):
with gr.Column():
warp_img_btn = gr.Button("Warp Images")
num_iters = gr.Radio(
choices=[2, 25, 50, 100],
value=2,
label="Number of iterations",
type="value",
)
cam_direction = gr.Radio(
choices=["left", "right"],
value="left",
label="Camera direction",
type="value",
)
degrees_per_frame = gr.Slider(
minimum=0.25,
maximum=1.0,
step=0.05,
value=0.3,
label="Degrees per frame",
)
iteration_num = gr.Textbox(
value="",
label="Current Diffusion Step",
)
with gr.Tab(label="Outputs"):
video_output = gr.Video(interactive=False)
image_files_output = gr.File(interactive=False, file_count="multiple")
# Rerun 0.16 has issues when embedded in a Gradio tab, so we share a viewer between all the tabs.
# In 0.17 we can instead scope each viewer to its own tab to clean up these examples further.
with gr.Row():
viewer = Rerun(
streaming=True,
)
warp_img_btn.click(
gradio_warped_image,
inputs=[img, num_iters, cam_direction, degrees_per_frame],
outputs=[viewer, video_output, image_files_output, iteration_num],
)
gr.Examples(
[
[
"/home/pablo/0Dev/docker/.per/repos/NVS_Solver/example_imgs/single/000001.jpg",
],
],
fn=warp_img_btn,
inputs=[img, num_iters, cam_direction, degrees_per_frame],
outputs=[viewer, video_output, image_files_output],
)
if __name__ == "__main__":
demo.queue().launch()