Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from gradio_rerun import Rerun | |
import rerun as rr | |
from pathlib import Path | |
from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result | |
from mini_dust3r.model import AsymmetricCroCo3DStereo | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = AsymmetricCroCo3DStereo.from_pretrained( | |
"naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt" | |
).to(DEVICE) | |
def predict(image_dir: str): | |
rr.init("my data") | |
optimized_results: OptimizedResult = inferece_dust3r( | |
image_dir=image_dir, | |
model=model, | |
device=DEVICE, | |
batch_size=1, | |
) | |
log_optimized_result(optimized_results, Path("world")) | |
rr.save("dust3r.rrd") | |
return "dust3r.rrd" | |
with gr.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="DUSt3R Demo") as demo: | |
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference | |
gr.HTML('<h2 style="text-align: center;">DUSt3R Demo</h2>') | |
with gr.Column(): | |
inputfiles = gr.File(file_count="multiple") | |
rerun_viewer = Rerun(height=900) | |
run_btn = gr.Button("Run") | |
run_btn.click(fn=predict, | |
inputs=[inputfiles], | |
outputs=[rerun_viewer]) | |
demo.launch() | |