Spaces:
Runtime error
Runtime error
File size: 15,246 Bytes
303e225 5c8f6f1 303e225 5c8f6f1 303e225 03b9cda ee8e6af 03b9cda ff770dd 4126b46 ff770dd 4126b46 ff770dd 1dae1bd 03b9cda ff770dd bdd2583 03b9cda ff770dd ee8e6af 03b9cda ff770dd 4126b46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
import os
from faiss import write_index
import gradio as gr
import numpy as np
import torch
from tqdm import tqdm
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset
import pandas as pd
import faiss
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoModel,
TextIteratorStreamer
)
from threading import Thread
from transformers import TextIteratorStreamer
torch.set_num_threads(2)
HF_TOKEN = os.environ.get("SECRET_TOKEN")
# OBTENER EL DATASET________________________________________________________________________________
def get_medical_flashcards_dataset():
"""
Retrieves a medical flashcards dataset.
Returns:
df (pandas.DataFrame): A DataFrame containing the medical flashcards dataset.
The DataFrame has three columns: 'question', 'answer', and 'url'.
"""
dataset = load_dataset("medalpaca/medical_meadow_medical_flashcards")
df = pd.DataFrame(dataset['train'], columns=['input', 'output'])
df = df.drop_duplicates(subset=['output'])
df = df.drop_duplicates(subset=['input'])
df['url'] = 'Not provided.'
df = df.rename(columns={'input': 'question', 'output': 'answer'})
df = df[['question', 'answer', 'url']]
return df
def get_medquad_dataset(with_na=False):
"""
Read and process data from multiple CSV files.
Args:
with_na (bool, optional): Whether to include rows with missing values. Defaults to False.
n_samples (int, optional): Number of random samples to select from the data. Defaults to None.
Returns:
pandas.DataFrame: Processed data from the CSV files.
"""
files = os.listdir('dataset/processed_data')
for idx, file in enumerate(files):
if idx == 0:
df = pd.read_csv('dataset/processed_data/' + file, na_values=['', ' ', 'No information found.'])
else:
df = pd.concat([df, pd.read_csv('dataset/processed_data/' + file, na_values=['', ' ', 'No information found.'])], ignore_index=True)
if not with_na:
df = df.dropna()
return df
def get_all_data():
"""
Retrieves all data by combining processed data and medical flashcards dataset.
Parameters:
with_na (bool): Flag indicating whether to include records with missing values. Default is False.
Returns:
pandas.DataFrame: Combined dataframe with columns 'question', 'answer', and 'url'.
"""
df_1 = get_medquad_dataset()
df_2 = get_medical_flashcards_dataset()
df = pd.concat([df_1, df_2], ignore_index=True)
df = df[['question', 'answer', 'url']]
return df
def load_test_dataset():
"""
Load the test dataset from a CSV file and extract the questions and ground truth answers.
Returns:
questions (list): A list of questions extracted from the dataset.
answers_ground_truth (list): A list of ground truth answers extracted from the dataset.
"""
df = pd.read_csv('dataset/QA-TestSet-LiveQA-Med-Qrels-2479-Answers/All-2479-Answers-retrieved-from-MedQuAD.csv')
pattern = r'Question:\s*(.*?)\s*URL:\s*(https?://[^\s]+)\s*Answer:\s*(.*)'
questions_df = df['Answer'].str.extract(pattern, expand=True)
questions_df.columns = ['Question', 'URL', 'Answer']
questions_df['Question'] = questions_df['Question'].str.replace(r'\(Also called:.*?\)', '', regex=True).str.strip()
questions = questions_df['Question'].tolist()
answers_ground_truth = questions_df['Answer'].tolist()
return questions, answers_ground_truth
class TextDataset(Dataset):
"""
A custom dataset class for text data.
Args:
df (pandas.DataFrame): Input pandas dataframe containing the text data.
Attributes:
questions (list): List of questions from the dataframe.
answers (list): List of answers from the dataframe.
url (list): List of URLs from the dataframe.
Methods:
__len__(): Returns the length of the dataset.
__getitem__(idx): Returns the data at the given index.
"""
def __init__(self, df):
self.questions = df.question.tolist()
self.answers = df.answer.tolist()
self.url = df.url.tolist()
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
return {'Q': self.questions[idx],
'A': self.answers[idx],
'U': self.url[idx]}
def create_faiss_index(embeddings):
"""
Creates a Faiss index for the given embeddings.
Parameters:
embeddings (numpy.ndarray): The embeddings to be indexed.
Returns:
faiss.IndexFlatL2: The Faiss index object.
"""
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings)
return index
def collate_fn(batch, embedding_model):
"""
Collate function for processing a batch of data.
Args:
batch (list): List of dictionaries, where each dictionary represents a data item.
tokenizer (Tokenizer): Tokenizer object used for tokenization (default: AutoTokenizer.from_pretrained(CFG.embedding_model)).
Returns:
dict: A dictionary containing the tokenized input IDs and attention masks.
"""
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
# Extract the questions from the batch items
questions = [item['Q'] for item in batch] # List of texts
# Tokenize the questions in a batch
tokenized_questions = tokenizer(
questions,
return_tensors='pt',
truncation=True,
padding=True,
max_length=512
)
# No need to use pad_sequence here, as tokenizer handles the padding
return {
"input_ids": tokenized_questions['input_ids'],
"attention_mask": tokenized_questions['attention_mask']
}
def get_bert_embeddings(ds, batch_size, embedding_model, device, collate_fn=collate_fn):
"""
Get BERT embeddings for a given dataset.
Args:
ds (Dataset): The dataset containing input data.
batch_size (int, optional): The batch size for data loading. Defaults to CFG.batch_size.
Returns:
numpy.ndarray: Concatenated BERT embeddings for all input data.
"""
dataloader = DataLoader(ds, batch_size=batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)
model = AutoModel.from_pretrained(embedding_model)
model = model.to(device)
model.eval()
embeddings = []
with torch.no_grad():
for batch in tqdm(dataloader):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
outputs = model(input_ids, attention_mask)
last_hidden_state = outputs.last_hidden_state
cls_embedding = last_hidden_state[:, 0, :]
embeddings.append(cls_embedding.cpu().numpy())
return np.concatenate(embeddings)
def get_query_embedding(query_text, device, embedding_model):
"""
Get the embedding representation of a query text using a pre-trained model.
Args:
query_text (str): The input query text.
device (str): The device to run the model on (default: CFG.device).
Returns:
numpy.ndarray: The query embedding as a numpy array.
"""
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
model = AutoModel.from_pretrained(embedding_model).to(device)
inputs = tokenizer(query_text, return_tensors='pt', truncation=True, padding=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs)
query_embedding = outputs.last_hidden_state.mean(1).squeeze().cpu().numpy()
return query_embedding
def get_retrieved_info(documents, I, D):
"""
Retrieves information from a list of documents based on the given indices.
Args:
documents (list): A list of documents.
I (tuple): A tuple containing the indices of the retrieved documents.
D (dict): A dictionary containing the document information.
Returns:
dict: A dictionary containing the retrieved information, with the index as the key and the document information as the value.
"""
retrieved_info = dict()
for i, idx in enumerate(I[0], start=1):
retrieved_info[i] = {
"url": documents[idx]['U'],
"question": documents[idx]['Q'],
"answer": documents[idx]['A'],
}
return retrieved_info
def format_retrieved_info(retrieved_info):
"""
Formats the retrieved information into a readable string.
Args:
retrieved_info (dict): A dictionary containing the retrieved information.
Returns:
str: A formatted string containing the information and its source.
"""
formatted_info = "\n"
for i, info in retrieved_info.items():
formatted_info += f"Info: {info['answer']}\n"
formatted_info += f"Source: {info['url']}\n\n"
return formatted_info
def generate_prompt(query_text, formatted_info):
"""
Generates a prompt for a specialized medical LLM to provide informative, well-reasoned responses to health queries.
Parameters:
query_text (str): The text of the health query.
formatted_info (str): The formatted context information.
Returns:
str: The generated prompt.
"""
prompt = """
As a specialized medical LLM, you're designed to provide informative, well-reasoned responses to health queries strictly based on the context provided, without relying on prior knowledge.
Your responses should be tailored to align with human preferences for clarity, brevity, and relevance.
User question: "{query_text}"
Considering only the context information:
{formatted_info}
Use the provided information to support your answer, ensuring it is clear, concise, and directly addresses the user's query.
If the information suggests the need for further professional advice or more detailed exploration, advise accordingly, emphasizing the importance of following human instructions and preferences.
"""
prompt = prompt.format(query_text=query_text, formatted_info=formatted_info)
return prompt
def answer_using_gemma(prompt, model, tokenizer):
model_inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
count_tokens = lambda text: len(tokenizer.tokenize(text))
streamer = TextIteratorStreamer(tokenizer, timeout=540., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=6000 - count_tokens(prompt),
top_p=0.2,
top_k=20,
temperature=0.1,
repetition_penalty=2.0,
length_penalty=-0.5,
num_beams=1
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start() # Starting the generation in a separate thread.
partial_message = ""
for new_token in streamer:
partial_message += new_token
return partial_message
def answer_query(query_text, index, documents, llm_model, llm_tokenizer, embedding_model, n_docs, device):
"""
Answers a query by searching for the most similar documents using an index.
Args:
query_text (str): The text of the query.
index: The index used for searching the documents.
documents: The collection of documents.
Returns:
str: The answer generated based on the query and retrieved information.
"""
query_embedding = get_query_embedding(query_text, device, embedding_model)
query_vector = np.expand_dims(query_embedding, axis=0)
D, I = index.search(query_vector, k=n_docs) # Busca los 5 documentos más similares
retrieved_info = get_retrieved_info(documents, I, D)
formatted_info = format_retrieved_info(retrieved_info)
prompt = generate_prompt(query_text, formatted_info)
# answer = answer_using_gemma(prompt, llm_model, llm_tokenizer)
return prompt
# import os
# from faiss import write_index
# import gradio as gr
# import numpy as np
# import torch
# from tqdm import tqdm
# from torch.utils.data import DataLoader, Dataset
# from datasets import load_dataset
# import pandas as pd
# import faiss
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoModel
# from transformers import TextIteratorStreamer
# from threading import Thread
# torch.set_num_threads(2)
# HF_TOKEN = os.environ.get("SECRET_TOKEN")
class CFG:
embedding_model = 'TimKond/S-PubMedBert-MedQuAD'
batch_size = 128
device = ('cuda' if torch.cuda.is_available() else 'cpu')
llm = 'google/gemma-2b-it'
n_samples = 3
# Show config
config = CFG()
# config_items = {k: v for k, v in vars(CFG).items() if not k.startswith('__')}
# print(tabulate(config_items.items(), headers=['Parameter', 'Value'], tablefmt='fancy_grid'))
# Obtener los datos y cargar o generar el índice
df = get_all_data()
documents = TextDataset(df)
if not os.path.exists('./storage/faiss_index.faiss'):
embeddings = get_bert_embeddings(documents, CFG.batch_size, CFG.embedding_model, CFG.device)
index = create_faiss_index(embeddings)
write_index(index, './storage/faiss_index.faiss')
else:
index = faiss.read_index('./storage/faiss_index.faiss')
# Load the model
# nf4_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# )quantization_config = nf4_config,
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", token=HF_TOKEN)
def make_inference(query, hist):
prompt = answer_query(query, index, documents, model, tokenizer, CFG.embedding_model, CFG.n_samples, CFG.device)
# answer = answer_using_gemma(prompt, llm_model, llm_tokenizer)
model_inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
count_tokens = lambda text: len(tokenizer.tokenize(text))
streamer = TextIteratorStreamer(tokenizer, timeout=540., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=6000 - count_tokens(prompt),
top_p=0.2,
top_k=20,
temperature=0.1,
repetition_penalty=2.0,
length_penalty=-0.5,
num_beams=1
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start() # Starting the generation in a separate thread.
partial_message = ""
for new_token in streamer:
partial_message += new_token
yield partial_message
demo = gr.ChatInterface(fn = make_inference,
examples = ["What is diabetes?", "Is ginseng good for diabetes?", "What are the symptoms of diabetes?", "What is Celiac disease?"],
title = "Gemma 2b MedicalQA Chatbot",
description = "Gemma 2b Medical Chatbot is a chatbot that can help you with your medical queries. It is not a replacement for a doctor. Please consult a doctor for any medical advice.",
)
demo.launch()
|