p4vv37's picture
Add application file
48847bb
raw
history blame
4.35 kB
import gradio as gr
import requests
from transformers import AutoTokenizer, T5ForConditionalGeneration, AutoModelForSeq2SeqLM
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/codereviewer")
tokenizer.special_dict = {
f"<e{i}>": tokenizer.get_vocab()[f"<e{i}>"] for i in range(99, -1, -1)
}
tokenizer.mask_id = tokenizer.get_vocab()["<mask>"]
tokenizer.bos_id = tokenizer.get_vocab()["<s>"]
tokenizer.pad_id = tokenizer.get_vocab()["<pad>"]
tokenizer.eos_id = tokenizer.get_vocab()["</s>"]
tokenizer.msg_id = tokenizer.get_vocab()["<msg>"]
tokenizer.keep_id = tokenizer.get_vocab()["<keep>"]
tokenizer.add_id = tokenizer.get_vocab()["<add>"]
tokenizer.del_id = tokenizer.get_vocab()["<del>"]
tokenizer.start_id = tokenizer.get_vocab()["<start>"]
tokenizer.end_id = tokenizer.get_vocab()["<end>"]
model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/codereviewer")
model.eval()
MAX_SOURCE_LENGTH = 512
def pad_assert(tokenizer, source_ids):
source_ids = source_ids[:MAX_SOURCE_LENGTH - 2]
source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
pad_len = MAX_SOURCE_LENGTH - len(source_ids)
source_ids += [tokenizer.pad_id] * pad_len
assert len(source_ids) == MAX_SOURCE_LENGTH, "Not equal length."
return source_ids
def encode_diff(tokenizer, diff, msg, source):
difflines = diff.split("\n")[1:] # remove start @@
difflines = [line for line in difflines if len(line.strip()) > 0]
map_dic = {"-": 0, "+": 1, " ": 2}
def f(s):
if s in map_dic:
return map_dic[s]
else:
return 2
labels = [f(line[0]) for line in difflines]
difflines = [line[1:].strip() for line in difflines]
inputstr = "<s>" + source + "</s>"
inputstr += "<msg>" + msg
for label, line in zip(labels, difflines):
if label == 1:
inputstr += "<add>" + line
elif label == 0:
inputstr += "<del>" + line
else:
inputstr += "<keep>" + line
source_ids = tokenizer.encode(inputstr, max_length=MAX_SOURCE_LENGTH, truncation=True)[1:-1]
source_ids = pad_assert(tokenizer, source_ids)
return source_ids
class FileDiffs(object):
def __init__(self, diff_string):
diff_array = diff_string.split("\n")
self.file_name = diff_array[0]
self.file_path = self.file_name.split("a/", 1)[1].rsplit("b/", 1)[0]
self.diffs = list()
for line in diff_array[4:]:
if line.startswith("@@"):
self.diffs.append(str())
self.diffs[-1] += "\n" + line
def review_commit(user, repository, commit):
commit_metadata = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}").json()
msg = commit_metadata["commit"]["message"]
diff_data = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}", headers={"Accept":"application/vnd.github.diff"})
code_diff = diff_data.text
files_diffs = list()
for file in code_diff.split("diff --git"):
if len(file) > 0:
fd = FileDiffs(file)
files_diffs.append(fd)
output = ""
for fd in files_diffs:
output += F"File:{fd.file_path}\n"
source = requests.get(F"https://raw.githubusercontent.com/{user}/{repository}/^{commit}/{fd.file_path}").text
for diff in fd.diffs:
inputs = torch.tensor([encode_diff(tokenizer, diff, msg, source)], dtype=torch.long).to("cpu")
inputs_mask = inputs.ne(tokenizer.pad_id)
preds = model.generate(inputs,
attention_mask=inputs_mask,
use_cache=True,
num_beams=5,
early_stopping=True,
max_length=100,
num_return_sequences=2
)
preds = list(preds.cpu().numpy())
pred_nls = [tokenizer.decode(id[2:], skip_special_tokens=True, clean_up_tokenization_spaces=False) for id in
preds]
output += diff + "\n#######\nComment:\n#######\n" + pred_nls[0] + "\n#######\n"
return output
iface = gr.Interface(fn=review_commit, inputs=["text", "text", "text"], outputs="text")
iface.launch()