Spaces:
Running
Running
from PIL import Image | |
import torch | |
from transformers import ( | |
AutoImageProcessor, | |
AutoModelForImageClassification, | |
) | |
import gradio as gr | |
import spaces # ZERO GPU | |
MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"] | |
MODEL_NAME = MODEL_NAMES[0] | |
model = AutoModelForImageClassification.from_pretrained( | |
MODEL_NAME, | |
) | |
model.to("cuda" if torch.cuda.is_available() else "cpu") | |
processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5): | |
return ( | |
[f"1{noun}"] | |
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)] | |
+ [f"{maximum+1}+{noun}s"] | |
) | |
PEOPLE_TAGS = ( | |
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"] | |
) | |
RATING_MAP = { | |
"general": "safe", | |
"sensitive": "sensitive", | |
"questionable": "nsfw", | |
"explicit": "explicit, nsfw", | |
} | |
DESCRIPTION_MD = """ | |
# WD Tagger with 🤗 transformers | |
Currently supports the following model(s): | |
- [p1atdev/wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf) | |
""".strip() | |
def postprocess_results( | |
results: dict[str, float], general_threshold: float, character_threshold: float | |
): | |
results = { | |
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True) | |
} | |
rating = {} | |
character = {} | |
general = {} | |
for k, v in results.items(): | |
if k.startswith("rating:"): | |
rating[k.replace("rating:", "")] = v | |
continue | |
elif k.startswith("character:"): | |
character[k.replace("character:", "")] = v | |
continue | |
general[k] = v | |
character = {k: v for k, v in character.items() if v >= character_threshold} | |
general = {k: v for k, v in general.items() if v >= general_threshold} | |
return rating, character, general | |
def animagine_prompt(rating: list[str], character: list[str], general: list[str]): | |
people_tags: list[str] = [] | |
other_tags: list[str] = [] | |
rating_tag = RATING_MAP[rating[0]] | |
for tag in general: | |
if tag in PEOPLE_TAGS: | |
people_tags.append(tag) | |
else: | |
other_tags.append(tag) | |
all_tags = people_tags + character + other_tags + [rating_tag] | |
return ", ".join(all_tags) | |
def predict_tags( | |
image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8 | |
): | |
inputs = processor.preprocess(image, return_tensors="pt") | |
outputs = model(**inputs.to(model.device, model.dtype)) | |
logits = torch.sigmoid(outputs.logits[0]) # take the first logits | |
# get probabilities | |
results = { | |
model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits) | |
} | |
# rating, character, general | |
rating, character, general = postprocess_results( | |
results, general_threshold, character_threshold | |
) | |
prompt = animagine_prompt( | |
list(rating.keys()), list(character.keys()), list(general.keys()) | |
) | |
return rating, character, general, prompt | |
def demo(): | |
with gr.Blocks() as ui: | |
gr.Markdown(DESCRIPTION_MD) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input image", type="pil") | |
with gr.Group(): | |
general_threshold = gr.Slider( | |
label="Threshold", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.3, | |
step=0.01, | |
interactive=True, | |
) | |
character_threshold = gr.Slider( | |
label="Character threshold", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.8, | |
step=0.01, | |
interactive=True, | |
) | |
_model_radio = gr.Dropdown( | |
choices=MODEL_NAMES, | |
label="Model", | |
value=MODEL_NAMES[0], | |
interactive=True, | |
) | |
start_btn = gr.Button(value="Start", variant="primary") | |
with gr.Column(): | |
prompt_text = gr.Text(label="Prompt") | |
rating_tags_label = gr.Label(label="Rating tags") | |
character_tags_label = gr.Label(label="Character tags") | |
general_tags_label = gr.Label(label="General tags") | |
start_btn.click( | |
predict_tags, | |
inputs=[input_image, general_threshold, character_threshold], | |
outputs=[ | |
rating_tags_label, | |
character_tags_label, | |
general_tags_label, | |
prompt_text, | |
], | |
) | |
return ui | |
if __name__ == "__main__": | |
demo().queue().launch() | |