from PIL import Image import torch from transformers import ( AutoImageProcessor, AutoModelForImageClassification, ) import gradio as gr import spaces # ZERO GPU MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"] MODEL_NAME = MODEL_NAMES[0] model = AutoModelForImageClassification.from_pretrained( MODEL_NAME, ) model.to("cuda" if torch.cuda.is_available() else "cpu") processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) def _people_tag(noun: str, minimum: int = 1, maximum: int = 5): return ( [f"1{noun}"] + [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)] + [f"{maximum+1}+{noun}s"] ) PEOPLE_TAGS = ( _people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"] ) RATING_MAP = { "general": "safe", "sensitive": "sensitive", "questionable": "nsfw", "explicit": "explicit, nsfw", } DESCRIPTION_MD = """ # WD Tagger with 🤗 transformers Currently supports the following model(s): - [p1atdev/wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf) """.strip() def postprocess_results( results: dict[str, float], general_threshold: float, character_threshold: float ): results = { k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True) } rating = {} character = {} general = {} for k, v in results.items(): if k.startswith("rating:"): rating[k.replace("rating:", "")] = v continue elif k.startswith("character:"): character[k.replace("character:", "")] = v continue general[k] = v character = {k: v for k, v in character.items() if v >= character_threshold} general = {k: v for k, v in general.items() if v >= general_threshold} return rating, character, general def animagine_prompt(rating: list[str], character: list[str], general: list[str]): people_tags: list[str] = [] other_tags: list[str] = [] rating_tag = RATING_MAP[rating[0]] for tag in general: if tag in PEOPLE_TAGS: people_tags.append(tag) else: other_tags.append(tag) all_tags = people_tags + character + other_tags + [rating_tag] return ", ".join(all_tags) @spaces.GPU(enable_queue=True) def predict_tags( image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8 ): inputs = processor.preprocess(image, return_tensors="pt") outputs = model(**inputs.to(model.device, model.dtype)) logits = torch.sigmoid(outputs.logits[0]) # take the first logits # get probabilities results = { model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits) } # rating, character, general rating, character, general = postprocess_results( results, general_threshold, character_threshold ) prompt = animagine_prompt( list(rating.keys()), list(character.keys()), list(general.keys()) ) return rating, character, general, prompt def demo(): with gr.Blocks() as ui: gr.Markdown(DESCRIPTION_MD) with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input image", type="pil") with gr.Group(): general_threshold = gr.Slider( label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True, ) character_threshold = gr.Slider( label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True, ) _model_radio = gr.Dropdown( choices=MODEL_NAMES, label="Model", value=MODEL_NAMES[0], interactive=True, ) start_btn = gr.Button(value="Start", variant="primary") with gr.Column(): prompt_text = gr.Text(label="Prompt") rating_tags_label = gr.Label(label="Rating tags") character_tags_label = gr.Label(label="Character tags") general_tags_label = gr.Label(label="General tags") start_btn.click( predict_tags, inputs=[input_image, general_threshold, character_threshold], outputs=[ rating_tags_label, character_tags_label, general_tags_label, prompt_text, ], ) return ui if __name__ == "__main__": demo().queue().launch()