p1atdev's picture
chore: use dropdown instead of radio
ba9e1f1
raw
history blame
4.89 kB
from PIL import Image
import torch
from transformers import (
AutoImageProcessor,
AutoModelForImageClassification,
)
import gradio as gr
# import spaces # ZERO GPU
MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
MODEL_NAME = MODEL_NAMES[0]
model = AutoModelForImageClassification.from_pretrained(
MODEL_NAME,
)
processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
return (
[f"1{noun}"]
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
+ [f"{maximum+1}+{noun}s"]
)
PEOPLE_TAGS = (
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
)
RATING_MAP = {
"general": "safe",
"sensitive": "sensitive",
"questionable": "nsfw",
"explicit": "explicit, nsfw",
}
DESCRIPTION_MD = """
# WD Tagger with 🤗 transformers
Currently supports the following model(s):
- [p1atdev/wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf)
""".strip()
def postprocess_results(
results: dict[str, float], general_threshold: float, character_threshold: float
):
results = {
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
}
rating = {}
character = {}
general = {}
for k, v in results.items():
if k.startswith("rating:"):
rating[k.replace("rating:", "")] = v
continue
elif k.startswith("character:"):
character[k.replace("character:", "")] = v
continue
general[k] = v
character = {k: v for k, v in character.items() if v >= character_threshold}
general = {k: v for k, v in general.items() if v >= general_threshold}
return rating, character, general
def animagine_prompt(rating: list[str], character: list[str], general: list[str]):
people_tags: list[str] = []
other_tags: list[str] = []
rating_tag = RATING_MAP[rating[0]]
for tag in general:
if tag in PEOPLE_TAGS:
people_tags.append(tag)
else:
other_tags.append(tag)
all_tags = people_tags + character + other_tags + [rating_tag]
return ", ".join(all_tags)
# @spaces.GPU
@torch.no_grad()
def predict_tags(
image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8
):
inputs = processor.preprocess(image, return_tensors="pt")
outputs = model(**inputs.to(model.device, model.dtype))
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
# get probabilities
results = {
model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
}
# rating, character, general
rating, character, general = postprocess_results(
results, general_threshold, character_threshold
)
prompt = animagine_prompt(
list(rating.keys()), list(character.keys()), list(general.keys())
)
return rating, character, general, prompt
def demo():
with gr.Blocks() as ui:
gr.Markdown(DESCRIPTION_MD)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", type="pil")
with gr.Group():
general_threshold = gr.Slider(
label="Threshold",
minimum=0.0,
maximum=1.0,
value=0.3,
step=0.01,
interactive=True,
)
character_threshold = gr.Slider(
label="Character threshold",
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.01,
interactive=True,
)
_model_radio = gr.Dropdown(
choices=MODEL_NAMES,
label="Model",
value=MODEL_NAMES[0],
interactive=True,
)
start_btn = gr.Button(value="Start", variant="primary")
with gr.Column():
prompt_text = gr.Text(label="Prompt")
rating_tags_label = gr.Label(label="Rating tags")
character_tags_label = gr.Label(label="Character tags")
general_tags_label = gr.Label(label="General tags")
start_btn.click(
predict_tags,
inputs=[input_image, general_threshold, character_threshold],
outputs=[
rating_tags_label,
character_tags_label,
general_tags_label,
prompt_text,
],
)
ui.launch(
# debug=True,
# share=True,
)
if __name__ == "__main__":
demo()