Spaces:
Running
on
A10G
Running
on
A10G
bug fix
Browse files- .gitignore +2 -1
- CIVIT_AI/convert.py +182 -0
- __pycache__/app.cpython-38.pyc +0 -0
- app.py +5 -6
- utils/__pycache__/constants.cpython-38.pyc +0 -0
- utils/constants.py +4 -4
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
results/*
|
2 |
pretrained_models/*
|
3 |
gradio_cached_examples/*
|
4 |
-
generated/*
|
|
|
|
1 |
results/*
|
2 |
pretrained_models/*
|
3 |
gradio_cached_examples/*
|
4 |
+
generated/*
|
5 |
+
CIVIT_AI/diffusers_models/*
|
CIVIT_AI/convert.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Conversion script for the LDM checkpoints. """
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import importlib
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
|
23 |
+
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
parser = argparse.ArgumentParser()
|
27 |
+
|
28 |
+
parser.add_argument(
|
29 |
+
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
|
30 |
+
)
|
31 |
+
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
|
32 |
+
parser.add_argument(
|
33 |
+
"--original_config_file",
|
34 |
+
default=None,
|
35 |
+
type=str,
|
36 |
+
help="The YAML config file corresponding to the original architecture.",
|
37 |
+
)
|
38 |
+
parser.add_argument(
|
39 |
+
"--num_in_channels",
|
40 |
+
default=None,
|
41 |
+
type=int,
|
42 |
+
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"--scheduler_type",
|
46 |
+
default="pndm",
|
47 |
+
type=str,
|
48 |
+
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
|
49 |
+
)
|
50 |
+
parser.add_argument(
|
51 |
+
"--pipeline_type",
|
52 |
+
default=None,
|
53 |
+
type=str,
|
54 |
+
help=(
|
55 |
+
"The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"
|
56 |
+
". If `None` pipeline will be automatically inferred."
|
57 |
+
),
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--image_size",
|
61 |
+
default=None,
|
62 |
+
type=int,
|
63 |
+
help=(
|
64 |
+
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
|
65 |
+
" Base. Use 768 for Stable Diffusion v2."
|
66 |
+
),
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--prediction_type",
|
70 |
+
default=None,
|
71 |
+
type=str,
|
72 |
+
help=(
|
73 |
+
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"
|
74 |
+
" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."
|
75 |
+
),
|
76 |
+
)
|
77 |
+
parser.add_argument(
|
78 |
+
"--extract_ema",
|
79 |
+
action="store_true",
|
80 |
+
help=(
|
81 |
+
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
|
82 |
+
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
|
83 |
+
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
|
84 |
+
),
|
85 |
+
)
|
86 |
+
parser.add_argument(
|
87 |
+
"--upcast_attention",
|
88 |
+
action="store_true",
|
89 |
+
help=(
|
90 |
+
"Whether the attention computation should always be upcasted. This is necessary when running stable"
|
91 |
+
" diffusion 2.1."
|
92 |
+
),
|
93 |
+
)
|
94 |
+
parser.add_argument(
|
95 |
+
"--from_safetensors",
|
96 |
+
action="store_true",
|
97 |
+
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
|
98 |
+
)
|
99 |
+
parser.add_argument(
|
100 |
+
"--to_safetensors",
|
101 |
+
action="store_true",
|
102 |
+
help="Whether to store pipeline in safetensors format or not.",
|
103 |
+
)
|
104 |
+
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
105 |
+
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
|
106 |
+
parser.add_argument(
|
107 |
+
"--stable_unclip",
|
108 |
+
type=str,
|
109 |
+
default=None,
|
110 |
+
required=False,
|
111 |
+
help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.",
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--stable_unclip_prior",
|
115 |
+
type=str,
|
116 |
+
default=None,
|
117 |
+
required=False,
|
118 |
+
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.",
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--clip_stats_path",
|
122 |
+
type=str,
|
123 |
+
help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.",
|
124 |
+
required=False,
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint."
|
128 |
+
)
|
129 |
+
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
|
130 |
+
parser.add_argument(
|
131 |
+
"--vae_path",
|
132 |
+
type=str,
|
133 |
+
default=None,
|
134 |
+
required=False,
|
135 |
+
help="Set to a path, hub id to an already converted vae to not convert it again.",
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"--pipeline_class_name",
|
139 |
+
type=str,
|
140 |
+
default=None,
|
141 |
+
required=False,
|
142 |
+
help="Specify the pipeline class name",
|
143 |
+
)
|
144 |
+
|
145 |
+
args = parser.parse_args()
|
146 |
+
|
147 |
+
if args.pipeline_class_name is not None:
|
148 |
+
library = importlib.import_module("diffusers")
|
149 |
+
class_obj = getattr(library, args.pipeline_class_name)
|
150 |
+
pipeline_class = class_obj
|
151 |
+
else:
|
152 |
+
pipeline_class = None
|
153 |
+
|
154 |
+
pipe = download_from_original_stable_diffusion_ckpt(
|
155 |
+
checkpoint_path=args.checkpoint_path,
|
156 |
+
original_config_file=args.original_config_file,
|
157 |
+
# config_files=args.config_files,
|
158 |
+
image_size=args.image_size,
|
159 |
+
prediction_type=args.prediction_type,
|
160 |
+
model_type=args.pipeline_type,
|
161 |
+
extract_ema=args.extract_ema,
|
162 |
+
scheduler_type=args.scheduler_type,
|
163 |
+
num_in_channels=args.num_in_channels,
|
164 |
+
upcast_attention=args.upcast_attention,
|
165 |
+
from_safetensors=args.from_safetensors,
|
166 |
+
device=args.device,
|
167 |
+
stable_unclip=args.stable_unclip,
|
168 |
+
stable_unclip_prior=args.stable_unclip_prior,
|
169 |
+
clip_stats_path=args.clip_stats_path,
|
170 |
+
controlnet=args.controlnet,
|
171 |
+
vae_path=args.vae_path,
|
172 |
+
pipeline_class=pipeline_class,
|
173 |
+
)
|
174 |
+
|
175 |
+
if args.half:
|
176 |
+
pipe.to(torch_dtype=torch.float16)
|
177 |
+
|
178 |
+
if args.controlnet:
|
179 |
+
# only save the controlnet model
|
180 |
+
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
181 |
+
else:
|
182 |
+
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
__pycache__/app.cpython-38.pyc
CHANGED
Binary files a/__pycache__/app.cpython-38.pyc and b/__pycache__/app.cpython-38.pyc differ
|
|
app.py
CHANGED
@@ -76,7 +76,6 @@ def run(*args):
|
|
76 |
num_inversion_step = 20
|
77 |
cond_step_start = 0.0
|
78 |
give_control_inversion = True
|
79 |
-
model_id = 'SD 1.5'
|
80 |
inversion_prompt = ''
|
81 |
save_folder = ''
|
82 |
list_of_inputs = [x for x in args]
|
@@ -111,7 +110,7 @@ def run(*args):
|
|
111 |
input_ns.save_folder = save_folder
|
112 |
|
113 |
input_ns.seed = list_of_inputs[11]
|
114 |
-
input_ns.model_id = const.MODEL_IDS[
|
115 |
# input_ns.width = list_of_inputs[23]
|
116 |
# input_ns.height = list_of_inputs[24]
|
117 |
# input_ns.original_size = list_of_inputs[25]
|
@@ -123,7 +122,6 @@ def run(*args):
|
|
123 |
if str(input_ns.model_id) != 'None':
|
124 |
input_ns.model_id = install_civitai_model(input_ns.model_id)
|
125 |
|
126 |
-
|
127 |
device = init_device()
|
128 |
input_ns = init_paths(input_ns)
|
129 |
|
@@ -195,8 +193,6 @@ with block:
|
|
195 |
</h2>
|
196 |
</div>
|
197 |
""")
|
198 |
-
with gr.Row():
|
199 |
-
gr.Markdown('## RAVE: Randomized Noise Shuffling for Fast and Consistent Video Editing with Diffusion Models')
|
200 |
with gr.Row():
|
201 |
with gr.Column():
|
202 |
with gr.Row():
|
@@ -254,6 +250,9 @@ with block:
|
|
254 |
with gr.Row():
|
255 |
positive_prompts = gr.Textbox(label='Positive prompts')
|
256 |
negative_prompts = gr.Textbox(label='Negative prompts')
|
|
|
|
|
|
|
257 |
with gr.Row():
|
258 |
preprocess_list = ['depth_zoe', 'lineart_realistic', 'lineart_standard', 'softedge_hed']
|
259 |
preprocess_name = gr.Dropdown(preprocess_list,
|
@@ -309,7 +308,7 @@ with block:
|
|
309 |
step=1)
|
310 |
|
311 |
|
312 |
-
inputs = [input_path, preprocess_name, controlnet_conditioning_scale, controlnet_guidance_end, controlnet_guidance_start, grid_size, sample_size, pad, guidance_scale, negative_prompts, positive_prompts, seed]
|
313 |
|
314 |
run_button.click(fn=run,
|
315 |
inputs=inputs,
|
|
|
76 |
num_inversion_step = 20
|
77 |
cond_step_start = 0.0
|
78 |
give_control_inversion = True
|
|
|
79 |
inversion_prompt = ''
|
80 |
save_folder = ''
|
81 |
list_of_inputs = [x for x in args]
|
|
|
110 |
input_ns.save_folder = save_folder
|
111 |
|
112 |
input_ns.seed = list_of_inputs[11]
|
113 |
+
input_ns.model_id = const.MODEL_IDS[list_of_inputs[12]]
|
114 |
# input_ns.width = list_of_inputs[23]
|
115 |
# input_ns.height = list_of_inputs[24]
|
116 |
# input_ns.original_size = list_of_inputs[25]
|
|
|
122 |
if str(input_ns.model_id) != 'None':
|
123 |
input_ns.model_id = install_civitai_model(input_ns.model_id)
|
124 |
|
|
|
125 |
device = init_device()
|
126 |
input_ns = init_paths(input_ns)
|
127 |
|
|
|
193 |
</h2>
|
194 |
</div>
|
195 |
""")
|
|
|
|
|
196 |
with gr.Row():
|
197 |
with gr.Column():
|
198 |
with gr.Row():
|
|
|
250 |
with gr.Row():
|
251 |
positive_prompts = gr.Textbox(label='Positive prompts')
|
252 |
negative_prompts = gr.Textbox(label='Negative prompts')
|
253 |
+
model_id = gr.Dropdown(const.MODEL_IDS,
|
254 |
+
label='Model id',
|
255 |
+
value='SD 1.5')
|
256 |
with gr.Row():
|
257 |
preprocess_list = ['depth_zoe', 'lineart_realistic', 'lineart_standard', 'softedge_hed']
|
258 |
preprocess_name = gr.Dropdown(preprocess_list,
|
|
|
308 |
step=1)
|
309 |
|
310 |
|
311 |
+
inputs = [input_path, preprocess_name, controlnet_conditioning_scale, controlnet_guidance_end, controlnet_guidance_start, grid_size, sample_size, pad, guidance_scale, negative_prompts, positive_prompts, seed, model_id]
|
312 |
|
313 |
run_button.click(fn=run,
|
314 |
inputs=inputs,
|
utils/__pycache__/constants.cpython-38.pyc
CHANGED
Binary files a/utils/__pycache__/constants.cpython-38.pyc and b/utils/__pycache__/constants.cpython-38.pyc differ
|
|
utils/constants.py
CHANGED
@@ -27,15 +27,15 @@ PREPROCESSOR_DICT = {
|
|
27 |
}
|
28 |
|
29 |
MODEL_IDS = {
|
30 |
-
'Realistic Vision V5.1': '130072',
|
31 |
'Realistic Vision V6.0' : '245598',
|
32 |
'MajicMIXRealisticV7' : '176425',
|
33 |
'DreamShaper' : '128713',
|
34 |
'EpicPhotoGasm' : '223670',
|
35 |
-
'DivineEleganceMix (Anime)': '238656',
|
36 |
'GhostMix (Anime)': '76907',
|
37 |
-
'CetusMix (Anime)': '105924',
|
38 |
-
'Counterfeit (Anime)': '57618',
|
39 |
'SD 1.5': 'None'
|
40 |
}
|
41 |
|
|
|
27 |
}
|
28 |
|
29 |
MODEL_IDS = {
|
30 |
+
# 'Realistic Vision V5.1': '130072',
|
31 |
'Realistic Vision V6.0' : '245598',
|
32 |
'MajicMIXRealisticV7' : '176425',
|
33 |
'DreamShaper' : '128713',
|
34 |
'EpicPhotoGasm' : '223670',
|
35 |
+
# 'DivineEleganceMix (Anime)': '238656',
|
36 |
'GhostMix (Anime)': '76907',
|
37 |
+
# 'CetusMix (Anime)': '105924',
|
38 |
+
# 'Counterfeit (Anime)': '57618',
|
39 |
'SD 1.5': 'None'
|
40 |
}
|
41 |
|