|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
|
|
from datasets import load_dataset |
|
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
|
|
asr_pipe = pipeline("automatic-speech-recognition", model="oyemade/w2v-bert-2.0-yoruba-colab-CV16.1", device=device) |
|
|
|
|
|
|
|
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") |
|
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) |
|
|
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) |
|
|
|
|
|
translation_model = pipeline("translation", "facebook/nllb-200-distilled-600M", src_lang="yor_Latn", tgt_lang="eng_Latn", device=device) |
|
|
|
|
|
def translate(audio): |
|
text = asr_pipe(audio)["text"] |
|
|
|
translation = translation_model(text) |
|
|
|
return translation[0]['translation_text'] |
|
|
|
def synthesise(text): |
|
inputs = processor(text=text, return_tensors="pt") |
|
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) |
|
return speech.cpu() |
|
|
|
def speech_to_speech_translation(audio): |
|
|
|
translated_text = translate(model, audio) |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) |
|
return 16000, synthesised_speech |
|
|
|
iface = gr.Interface( |
|
speech_to_speech_translation, |
|
gr.Audio(sources="microphone", type="filepath"), |
|
gr.Audio(label="Generated Speech", type="numpy"), |
|
title="Neoform AI: Yoruba Speech to English Speech", |
|
description="Demo for Yoruba speech translated to English Speech. NOTE: If you get an ERROR after pressing submit, give the audio some secs to load then try again.", |
|
) |
|
|
|
iface.launch() |