MANUU_Demo_Test / app.py
owaiskha9654's picture
Update app.py
8dbf887 verified
raw
history blame
6.31 kB
import os
import pandas as pd
import pathlib, fitz
from langchain.vectorstores import Chroma
# from PyPDF2 import PdfReader
# from google.colab import files
# from google.colab import userdata
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.docstore.document import Document
from huggingface_hub import InferenceClient
import gradio as gr
file_paths = ["docs/MANUU U.G. PROGRAMMES PROSPECTUS 2022-23 Eng 5 April 2022 4 PM.pdf","Prospectus 2023-24 (Eng-Version) (1)_0.pdf"]
page_contents = []
for fname in file_paths:
with fitz.open(fname) as doc:
print("Total Pages in {} are {}".format(fname,len(doc)))
for page in doc:
text = page.get_text()
if "............" in text:
continue
#print(text)
page_contents.append(text)
#break
embedding_model = HuggingFaceInstructEmbeddings(
#model_name="hkunlp/instructor-large",
#model_name="jinaai/jina-embedding-b-en-v1",
model_name="WhereIsAI/UAE-Large-V1",
model_kwargs={"device": "cuda"}
#model_kwargs={"device": "cpu"}
)
df_documents_chunks = pd.DataFrame({"doc_pages":page_contents})
df_documents_chunks["index_id"] = df_documents_chunks.index
print(df_documents_chunks)
def row_to_doc(row):
return Document(metadata={
'id': row['index_id']
}, page_content=row['doc_pages'])
manuuindex_df_processed_documents = df_documents_chunks.apply(lambda row:row_to_doc(row),axis=1).to_list()
COLLECTION_NAME='Manuu_collection'
PERSIST_DIR='MANUU_dir4'
if os.path.exists(PERSIST_DIR):
print('Existing Collection : ', COLLECTION_NAME)
vectordb = Chroma(persist_directory=PERSIST_DIR, collection_name=COLLECTION_NAME, embedding_function=embedding_model)
print(f"Collection {vectordb._collection.name} has {vectordb._collection.count()} documents...")
else:
print('New Collection : ', COLLECTION_NAME)
vectordb = Chroma.from_documents(documents=manuuindex_df_processed_documents,
embedding=embedding_model,
collection_name=COLLECTION_NAME,
persist_directory=PERSIST_DIR,
collection_metadata=None)
client = vectordb.persist() # Save vector database as persistent files in the output folder
print(f"Collection {vectordb._collection.name} has {vectordb._collection.count()} documents...")
client = InferenceClient(
model = "mistralai/Mixtral-8x7B-Instruct-v0.1")
def context_fn(question_text,vectordb):
relevant_chunks = vectordb.similarity_search_with_score(
query=question_text,
k=5,)
context_5 = "\n\n\n".join([i[0].page_content for i in relevant_chunks])
return context_5
def format_prompt(message, history, context_prompt):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt}. Do not Give information from outside the Document Contexts and general Information[/INST]"
prompt += f" {bot_response}\n"
prompt += f" CONTEXT:{context_prompt}</s> "
prompt += f"[INST] {message} [/INST]"
with open('prompts.txt', 'a') as file:
print("user_prompt",prompt, file=file)
file.close()
return prompt
def generate_fn(
prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,vectordb = vectordb
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
context_5 = context_fn(question_text = prompt, vectordb = vectordb)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history, context_5)
#print("formatted_prompt",formatted_prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.7,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=2048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.3,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
examples=[["Where is Maulana Azad National Urdu University?", None, None, None, None, None,],
[ "When was Department of Women Education established?", None, None, None, None, None, ],
["Tell me about Department of Public Administration", None, None, None, None, None,],
["What are Reservations for SCs/STs/OBCs /Women candidates/EWS Categories?", None, None, None, None, None,],
["What is Upper Age Limit limit for Admissions", None, None, None, None, None,],
["Fetch Details of Hostel Fee* (2022-23)?", None, None, None, None, None,],
["What is Entrance Test Schedule 2023-24?", None, None, None, None, None,],
]
gr.ChatInterface(
fn=generate_fn,
analytics_enabled=True,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Mixtral 46.7B",
examples=examples,
concurrency_limit=20,
).launch()