|
import numpy as np |
|
import gradio as gr |
|
from transformers import AutoTokenizer,AutoModelForSequenceClassification |
|
from transformers import set_seed |
|
from torch.utils.data import Dataset,DataLoader |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
set_seed(4) |
|
device = "cpu" |
|
model_checkpoint = "facebook/esm2_t6_8M_UR50D" |
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) |
|
|
|
def AMP(file): |
|
test_sequences = file |
|
max_len = 30 |
|
test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt') |
|
|
|
class MyModel(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320) |
|
self.bn1 = nn.BatchNorm1d(256) |
|
self.bn2 = nn.BatchNorm1d(128) |
|
self.bn3 = nn.BatchNorm1d(64) |
|
self.relu = nn.ReLU() |
|
self.fc1 = nn.Linear(320,256) |
|
self.fc2 = nn.Linear(256,128) |
|
self.fc3 = nn.Linear(128,64) |
|
self.output_layer = nn.Linear(64,2) |
|
self.dropout = nn.Dropout(0) |
|
def forward(self,x): |
|
with torch.no_grad(): |
|
bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device)) |
|
output_feature = self.dropout(bert_output["logits"]) |
|
output_feature = self.relu(self.bn1(self.fc1(output_feature))) |
|
output_feature = self.relu(self.bn2(self.fc2(output_feature))) |
|
output_feature = self.relu(self.bn3(self.fc3(output_feature))) |
|
output_feature = self.output_layer(output_feature) |
|
return torch.softmax(output_feature,dim=1) |
|
|
|
model = MyModel() |
|
model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')), strict=False) |
|
model = model.to(device) |
|
model.eval() |
|
out_probability = [] |
|
with torch.no_grad(): |
|
predict = model(test_data) |
|
out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist()) |
|
test_argmax = np.argmax(predict.cpu(), axis=1).tolist() |
|
id2str = {0:"non-AMP", 1:"AMP"} |
|
return id2str[test_argmax[0]], out_probability[0] |
|
|
|
iface = gr.Interface(fn=AMP, |
|
inputs="text", |
|
outputs= ["text", "text"]) |
|
iface.launch() |