Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# sparse gradio demo functions | |
# -------------------------------------------------------- | |
import sys | |
import spaces | |
import math | |
import gradio | |
import os | |
import numpy as np | |
import functools | |
import trimesh | |
import copy | |
from scipy.spatial.transform import Rotation | |
import tempfile | |
import shutil | |
from mast3r.cloud_opt.sparse_ga import sparse_global_alignment | |
from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess | |
from mast3r.model import AsymmetricMASt3R | |
from dust3r.image_pairs import make_pairs | |
from dust3r.utils.image import load_images | |
from dust3r.utils.device import to_numpy | |
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes | |
from dust3r.demo import get_args_parser as dust3r_get_args_parser | |
import matplotlib.pyplot as pl | |
import torch | |
from demo_globals import CACHE_PATH, MODEL, DEVICE, SILENT, DATASET_DIR | |
class SparseGAState(): | |
def __init__(self, cache_dir=None, outfile_name=None): | |
# self.sparse_ga = sparse_ga | |
self.cache_dir = cache_dir | |
self.outfile_name = outfile_name | |
def __del__(self): | |
if hasattr(self, 'cache_dir') and self.cache_dir is not None and os.path.isdir(self.cache_dir): | |
shutil.rmtree(self.cache_dir) | |
if hasattr(self, 'outfile_name') and self.outfile_name is not None and os.path.isfile(self.outfile_name): | |
os.remove(self.outfile_name) | |
def get_args_parser(): | |
parser = dust3r_get_args_parser() | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--gradio_delete_cache', default=None, type=int, | |
help='age/frequency at which gradio removes the file. If >0, matching cache is purged') | |
actions = parser._actions | |
for action in actions: | |
if action.dest == 'model_name': | |
action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"] | |
# change defaults | |
parser.prog = 'mast3r demo' | |
return parser | |
def _convert_scene_output_to_glb(outfile, imgs, pts3d, mask, focals, cams2world, cam_size=0.05, | |
cam_color=None, as_pointcloud=False, | |
transparent_cams=False, silent=False): | |
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals) | |
pts3d = to_numpy(pts3d) | |
imgs = to_numpy(imgs) | |
focals = to_numpy(focals) | |
cams2world = to_numpy(cams2world) | |
scene = trimesh.Scene() | |
# full pointcloud | |
if as_pointcloud: | |
pts = np.concatenate([p[m.ravel()] for p, m in zip(pts3d, mask)]).reshape(-1, 3) | |
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]).reshape(-1, 3) | |
valid_msk = np.isfinite(pts.sum(axis=1)) | |
pct = trimesh.PointCloud(pts[valid_msk], colors=col[valid_msk]) | |
scene.add_geometry(pct) | |
else: | |
meshes = [] | |
for i in range(len(imgs)): | |
pts3d_i = pts3d[i].reshape(imgs[i].shape) | |
msk_i = mask[i] & np.isfinite(pts3d_i.sum(axis=-1)) | |
meshes.append(pts3d_to_trimesh(imgs[i], pts3d_i, msk_i)) | |
mesh = trimesh.Trimesh(**cat_meshes(meshes)) | |
scene.add_geometry(mesh) | |
# add each camera | |
for i, pose_c2w in enumerate(cams2world): | |
if isinstance(cam_color, list): | |
camera_edge_color = cam_color[i] | |
else: | |
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)] | |
add_scene_cam(scene, pose_c2w, camera_edge_color, | |
None if transparent_cams else imgs[i], focals[i], | |
imsize=imgs[i].shape[1::-1], screen_width=cam_size) | |
rot = np.eye(4) | |
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() | |
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot)) | |
if not silent: | |
print('(exporting 3D scene to', outfile, ')') | |
scene.export(file_obj=outfile) | |
return outfile | |
def get_3D_model_from_scene(scene, scene_state, min_conf_thr=2, as_pointcloud=False, mask_sky=False, | |
clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0): | |
""" | |
extract 3D_model (glb file) from a reconstructed scene | |
""" | |
if scene_state is None: | |
return None | |
outfile = scene_state.outfile_name | |
if outfile is None: | |
return None | |
# # get optimized values from scene | |
# scene = scenescene_state.sparse_ga | |
rgbimg = scene.imgs | |
focals = scene.get_focals().cpu() | |
cams2world = scene.get_im_poses().cpu() | |
# 3D pointcloud from depthmap, poses and intrinsics | |
if TSDF_thresh > 0: | |
tsdf = TSDFPostProcess(scene, TSDF_thresh=TSDF_thresh) | |
pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=clean_depth)) | |
else: | |
pts3d, _, confs = to_numpy(scene.get_dense_pts3d(clean_depth=clean_depth)) | |
# torch.save(confs, '/app/data/confs.pt') | |
msk = to_numpy([c > min_conf_thr for c in confs]) | |
return _convert_scene_output_to_glb(outfile, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud, | |
transparent_cams=transparent_cams, cam_size=cam_size, silent=SILENT) | |
def save_colmap_scene(scene, save_dir, min_conf_thr=2, clean_depth=False): | |
if 'save_pointcloud_with_normals' not in globals(): | |
sys.path.append(os.path.join(os.path.dirname(__file__), '../wild-gaussian-splatting/gaussian-splatting')) | |
sys.path.append(os.path.join(os.path.dirname(__file__), '../wild-gaussian-splatting/src')) | |
from colmap_dataset_utils import ( | |
inv, | |
init_filestructure, | |
save_images_masks, | |
save_cameras, | |
save_imagestxt, | |
save_pointcloud, | |
save_pointcloud_with_normals | |
) | |
cam2world = scene.get_im_poses().detach().cpu().numpy() | |
world2cam = inv(cam2world) # | |
principal_points = scene.get_principal_points().detach().cpu().numpy() | |
focals = scene.get_focals().detach().cpu().numpy()[..., None] | |
imgs = np.array(scene.imgs) | |
pts3d, _, confs = scene.get_dense_pts3d(clean_depth=clean_depth) | |
pts3d = [i.detach().reshape(imgs[0].shape) for i in pts3d] # | |
masks = to_numpy([c > min_conf_thr for c in to_numpy(confs)]) | |
# move | |
mask_images = True | |
save_path, images_path, masks_path, sparse_path = init_filestructure(save_dir) | |
save_images_masks(imgs, masks, images_path, masks_path, mask_images) | |
save_cameras(focals, principal_points, sparse_path, imgs_shape=imgs.shape) | |
save_imagestxt(world2cam, sparse_path) | |
save_pointcloud_with_normals(imgs, pts3d, masks, sparse_path) | |
return save_path | |
def get_reconstructed_scene(current_scene_state, | |
filelist, min_conf_thr, matching_conf_thr, | |
as_pointcloud, cam_size, shared_intrinsics, **kw): | |
""" | |
from a list of images, run mast3r inference, sparse global aligner. | |
then run get_3D_model_from_scene | |
""" | |
image_size = 512 | |
imgs = load_images(filelist, size=image_size, verbose=not SILENT) | |
if len(imgs) == 1: | |
imgs = [imgs[0], copy.deepcopy(imgs[0])] | |
imgs[1]['idx'] = 1 | |
filelist = [filelist[0], filelist[0] + '_2'] | |
lr1 = 0.07 | |
niter1 = 500 | |
lr2 = 0.014 | |
niter2 = 200 | |
optim_level = 'refine' | |
mask_sky, clean_depth, transparent_cams = False, True, False | |
if len(filelist) < 13: | |
scenegraph_type = 'complete' | |
winsize = 1 | |
else: | |
scenegraph_type = 'logwin' | |
half_size = math.ceil((len(filelist) - 1) / 2) | |
max_winsize = max(1, math.ceil(math.log(half_size, 2))) | |
winsize = min(5, max_winsize) | |
refid = 0 | |
win_cyclic = False | |
TSDF_thresh = 0 | |
scene_graph_params = [scenegraph_type] | |
if scenegraph_type in ["swin", "logwin"]: | |
scene_graph_params.append(str(winsize)) | |
elif scenegraph_type == "oneref": | |
scene_graph_params.append(str(refid)) | |
if scenegraph_type in ["swin", "logwin"] and not win_cyclic: | |
scene_graph_params.append('noncyclic') | |
scene_graph = '-'.join(scene_graph_params) | |
pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True) | |
base_cache_dir = os.path.join(CACHE_PATH, 'cache') | |
os.makedirs(base_cache_dir, exist_ok=True) | |
def get_next_dir(base_dir): | |
run_counter = 0 | |
while True: | |
run_cache_dir = os.path.join(base_dir, f"run_{run_counter}") | |
if not os.path.exists(run_cache_dir): | |
os.makedirs(run_cache_dir) | |
break | |
run_counter += 1 | |
return run_cache_dir | |
cache_dir = get_next_dir(base_cache_dir) | |
scene = sparse_global_alignment(filelist, pairs, cache_dir, | |
MODEL, lr1=lr1, niter1=niter1, lr2=lr2, niter2=niter2, device=DEVICE, | |
opt_depth='depth' in optim_level, shared_intrinsics=shared_intrinsics, | |
matching_conf_thr=matching_conf_thr, **kw) | |
base_colmapdata_dir = os.path.join(CACHE_PATH, DATASET_DIR) | |
os.makedirs(base_colmapdata_dir, exist_ok=True) | |
colmap_data_dir = get_next_dir(base_colmapdata_dir) | |
# | |
save_colmap_scene(scene, colmap_data_dir, min_conf_thr, clean_depth) | |
if current_scene_state is not None and \ | |
current_scene_state.outfile_name is not None: | |
outfile_name = current_scene_state.outfile_name | |
else: | |
outfile_name = tempfile.mktemp(suffix='_scene.glb', dir=CACHE_PATH) | |
scene_state = SparseGAState(cache_dir, outfile_name) | |
outfile = get_3D_model_from_scene(scene, scene_state, min_conf_thr, as_pointcloud, mask_sky, | |
clean_depth, transparent_cams, cam_size, TSDF_thresh) | |
print(f"colmap_data_dir: {colmap_data_dir}") | |
print(f"outfile_name: {outfile_name}") | |
print(f"cache_dir: {cache_dir}") | |
torch.cuda.empty_cache() | |
return scene_state, outfile | |
def mast3r_demo_tab(): | |
if not SILENT: | |
print('Outputing stuff in', CACHE_PATH) | |
def get_context(): | |
css = """.gradio-container {margin: 0 !important; min-width: 100%};""" | |
title = "MASt3R Demo" | |
return gradio.Blocks(css=css, title=title, delete_cache=(True, True)) | |
with get_context() as demo: | |
scene = gradio.State(None) | |
# Title for the MASt3R demo | |
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>') | |
# Add instructions for the MASt3R demo | |
gradio.HTML(''' | |
<div style="padding: 10px; background-color: #e9f7ef; border-radius: 5px; margin-bottom: 10px;"> | |
<h3>Instructions for MASt3R Demo</h3> | |
<ul style="text-align: left; color: #333;"> | |
<li>Upload images. It is recommended to use no more than 10-12 images to avoid exceeding the 3-minute runtime limit for zeroGPU dynamic resources.</li> | |
<li>Press the "Run" button to start the process.</li> | |
<li>Once the stage is finished and the point cloud with cameras is visible below, switch to the 3DGS tab and follow the instructions there.</li> | |
</ul> | |
</div> | |
''') | |
inputfiles = gradio.File(file_count="multiple") | |
run_btn = gradio.Button("Run") | |
with gradio.Row(): | |
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5., | |
minimum=0., maximum=30., step=0.1, | |
info="Before Fallback to Regr3D!") | |
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1) | |
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001) | |
with gradio.Row(): | |
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud") | |
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics", | |
info="Only optimize one set of intrinsics for all views") | |
outmodel = gradio.Model3D() | |
run_btn.click( | |
fn=get_reconstructed_scene, | |
inputs=[scene, inputfiles, min_conf_thr, matching_conf_thr, | |
as_pointcloud, cam_size, shared_intrinsics], | |
outputs=[scene, outmodel] | |
) | |
return demo | |