mast3r-3dgs / demo /mast3r_demo.py
ostapagon's picture
Add some instruction. Delete unnesessary ui components.
b46de64
raw
history blame
12.5 kB
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# sparse gradio demo functions
# --------------------------------------------------------
import sys
import spaces
import math
import gradio
import os
import numpy as np
import functools
import trimesh
import copy
from scipy.spatial.transform import Rotation
import tempfile
import shutil
from mast3r.cloud_opt.sparse_ga import sparse_global_alignment
from mast3r.cloud_opt.tsdf_optimizer import TSDFPostProcess
from mast3r.model import AsymmetricMASt3R
from dust3r.image_pairs import make_pairs
from dust3r.utils.image import load_images
from dust3r.utils.device import to_numpy
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from dust3r.demo import get_args_parser as dust3r_get_args_parser
import matplotlib.pyplot as pl
import torch
from demo_globals import CACHE_PATH, MODEL, DEVICE, SILENT, DATASET_DIR
class SparseGAState():
def __init__(self, cache_dir=None, outfile_name=None):
# self.sparse_ga = sparse_ga
self.cache_dir = cache_dir
self.outfile_name = outfile_name
def __del__(self):
if hasattr(self, 'cache_dir') and self.cache_dir is not None and os.path.isdir(self.cache_dir):
shutil.rmtree(self.cache_dir)
if hasattr(self, 'outfile_name') and self.outfile_name is not None and os.path.isfile(self.outfile_name):
os.remove(self.outfile_name)
def get_args_parser():
parser = dust3r_get_args_parser()
parser.add_argument('--share', action='store_true')
parser.add_argument('--gradio_delete_cache', default=None, type=int,
help='age/frequency at which gradio removes the file. If >0, matching cache is purged')
actions = parser._actions
for action in actions:
if action.dest == 'model_name':
action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"]
# change defaults
parser.prog = 'mast3r demo'
return parser
def _convert_scene_output_to_glb(outfile, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False, silent=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m.ravel()] for p, m in zip(pts3d, mask)]).reshape(-1, 3)
col = np.concatenate([p[m] for p, m in zip(imgs, mask)]).reshape(-1, 3)
valid_msk = np.isfinite(pts.sum(axis=1))
pct = trimesh.PointCloud(pts[valid_msk], colors=col[valid_msk])
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
pts3d_i = pts3d[i].reshape(imgs[i].shape)
msk_i = mask[i] & np.isfinite(pts3d_i.sum(axis=-1))
meshes.append(pts3d_to_trimesh(imgs[i], pts3d_i, msk_i))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
def get_3D_model_from_scene(scene, scene_state, min_conf_thr=2, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
if scene_state is None:
return None
outfile = scene_state.outfile_name
if outfile is None:
return None
# # get optimized values from scene
# scene = scenescene_state.sparse_ga
rgbimg = scene.imgs
focals = scene.get_focals().cpu()
cams2world = scene.get_im_poses().cpu()
# 3D pointcloud from depthmap, poses and intrinsics
if TSDF_thresh > 0:
tsdf = TSDFPostProcess(scene, TSDF_thresh=TSDF_thresh)
pts3d, _, confs = to_numpy(tsdf.get_dense_pts3d(clean_depth=clean_depth))
else:
pts3d, _, confs = to_numpy(scene.get_dense_pts3d(clean_depth=clean_depth))
# torch.save(confs, '/app/data/confs.pt')
msk = to_numpy([c > min_conf_thr for c in confs])
return _convert_scene_output_to_glb(outfile, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size, silent=SILENT)
def save_colmap_scene(scene, save_dir, min_conf_thr=2, clean_depth=False):
if 'save_pointcloud_with_normals' not in globals():
sys.path.append(os.path.join(os.path.dirname(__file__), '../wild-gaussian-splatting/gaussian-splatting'))
sys.path.append(os.path.join(os.path.dirname(__file__), '../wild-gaussian-splatting/src'))
from colmap_dataset_utils import (
inv,
init_filestructure,
save_images_masks,
save_cameras,
save_imagestxt,
save_pointcloud,
save_pointcloud_with_normals
)
cam2world = scene.get_im_poses().detach().cpu().numpy()
world2cam = inv(cam2world) #
principal_points = scene.get_principal_points().detach().cpu().numpy()
focals = scene.get_focals().detach().cpu().numpy()[..., None]
imgs = np.array(scene.imgs)
pts3d, _, confs = scene.get_dense_pts3d(clean_depth=clean_depth)
pts3d = [i.detach().reshape(imgs[0].shape) for i in pts3d] #
masks = to_numpy([c > min_conf_thr for c in to_numpy(confs)])
# move
mask_images = True
save_path, images_path, masks_path, sparse_path = init_filestructure(save_dir)
save_images_masks(imgs, masks, images_path, masks_path, mask_images)
save_cameras(focals, principal_points, sparse_path, imgs_shape=imgs.shape)
save_imagestxt(world2cam, sparse_path)
save_pointcloud_with_normals(imgs, pts3d, masks, sparse_path)
return save_path
@spaces.GPU(duration=10)
def get_reconstructed_scene(current_scene_state,
filelist, min_conf_thr, matching_conf_thr,
as_pointcloud, cam_size, shared_intrinsics, **kw):
"""
from a list of images, run mast3r inference, sparse global aligner.
then run get_3D_model_from_scene
"""
image_size = 512
imgs = load_images(filelist, size=image_size, verbose=not SILENT)
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
filelist = [filelist[0], filelist[0] + '_2']
lr1 = 0.07
niter1 = 500
lr2 = 0.014
niter2 = 200
optim_level = 'refine'
mask_sky, clean_depth, transparent_cams = False, True, False
if len(filelist) < 13:
scenegraph_type = 'complete'
winsize = 1
else:
scenegraph_type = 'logwin'
half_size = math.ceil((len(filelist) - 1) / 2)
max_winsize = max(1, math.ceil(math.log(half_size, 2)))
winsize = min(5, max_winsize)
refid = 0
win_cyclic = False
TSDF_thresh = 0
scene_graph_params = [scenegraph_type]
if scenegraph_type in ["swin", "logwin"]:
scene_graph_params.append(str(winsize))
elif scenegraph_type == "oneref":
scene_graph_params.append(str(refid))
if scenegraph_type in ["swin", "logwin"] and not win_cyclic:
scene_graph_params.append('noncyclic')
scene_graph = '-'.join(scene_graph_params)
pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True)
base_cache_dir = os.path.join(CACHE_PATH, 'cache')
os.makedirs(base_cache_dir, exist_ok=True)
def get_next_dir(base_dir):
run_counter = 0
while True:
run_cache_dir = os.path.join(base_dir, f"run_{run_counter}")
if not os.path.exists(run_cache_dir):
os.makedirs(run_cache_dir)
break
run_counter += 1
return run_cache_dir
cache_dir = get_next_dir(base_cache_dir)
scene = sparse_global_alignment(filelist, pairs, cache_dir,
MODEL, lr1=lr1, niter1=niter1, lr2=lr2, niter2=niter2, device=DEVICE,
opt_depth='depth' in optim_level, shared_intrinsics=shared_intrinsics,
matching_conf_thr=matching_conf_thr, **kw)
base_colmapdata_dir = os.path.join(CACHE_PATH, DATASET_DIR)
os.makedirs(base_colmapdata_dir, exist_ok=True)
colmap_data_dir = get_next_dir(base_colmapdata_dir)
#
save_colmap_scene(scene, colmap_data_dir, min_conf_thr, clean_depth)
if current_scene_state is not None and \
current_scene_state.outfile_name is not None:
outfile_name = current_scene_state.outfile_name
else:
outfile_name = tempfile.mktemp(suffix='_scene.glb', dir=CACHE_PATH)
scene_state = SparseGAState(cache_dir, outfile_name)
outfile = get_3D_model_from_scene(scene, scene_state, min_conf_thr, as_pointcloud, mask_sky,
clean_depth, transparent_cams, cam_size, TSDF_thresh)
print(f"colmap_data_dir: {colmap_data_dir}")
print(f"outfile_name: {outfile_name}")
print(f"cache_dir: {cache_dir}")
torch.cuda.empty_cache()
return scene_state, outfile
def mast3r_demo_tab():
if not SILENT:
print('Outputing stuff in', CACHE_PATH)
def get_context():
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
title = "MASt3R Demo"
return gradio.Blocks(css=css, title=title, delete_cache=(True, True))
with get_context() as demo:
scene = gradio.State(None)
# Title for the MASt3R demo
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>')
# Add instructions for the MASt3R demo
gradio.HTML('''
<div style="padding: 10px; background-color: #e9f7ef; border-radius: 5px; margin-bottom: 10px;">
<h3>Instructions for MASt3R Demo</h3>
<ul style="text-align: left; color: #333;">
<li>Upload images. It is recommended to use no more than 10-12 images to avoid exceeding the 3-minute runtime limit for zeroGPU dynamic resources.</li>
<li>Press the "Run" button to start the process.</li>
<li>Once the stage is finished and the point cloud with cameras is visible below, switch to the 3DGS tab and follow the instructions there.</li>
</ul>
</div>
''')
inputfiles = gradio.File(file_count="multiple")
run_btn = gradio.Button("Run")
with gradio.Row():
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5.,
minimum=0., maximum=30., step=0.1,
info="Before Fallback to Regr3D!")
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1)
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
with gradio.Row():
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics",
info="Only optimize one set of intrinsics for all views")
outmodel = gradio.Model3D()
run_btn.click(
fn=get_reconstructed_scene,
inputs=[scene, inputfiles, min_conf_thr, matching_conf_thr,
as_pointcloud, cam_size, shared_intrinsics],
outputs=[scene, outmodel]
)
return demo