Spaces:
Sleeping
Sleeping
Upload inpaint_worker 3.py
Browse files- inpaint_worker 3.py +264 -0
inpaint_worker 3.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from PIL import Image, ImageFilter
|
5 |
+
from modules.util import resample_image, set_image_shape_ceil, get_image_shape_ceil
|
6 |
+
from modules.upscaler import perform_upscale
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
|
10 |
+
inpaint_head_model = None
|
11 |
+
|
12 |
+
|
13 |
+
class InpaintHead(torch.nn.Module):
|
14 |
+
def __init__(self, *args, **kwargs):
|
15 |
+
super().__init__(*args, **kwargs)
|
16 |
+
self.head = torch.nn.Parameter(torch.empty(size=(320, 5, 3, 3), device='cpu'))
|
17 |
+
|
18 |
+
def __call__(self, x):
|
19 |
+
x = torch.nn.functional.pad(x, (1, 1, 1, 1), "replicate")
|
20 |
+
return torch.nn.functional.conv2d(input=x, weight=self.head)
|
21 |
+
|
22 |
+
|
23 |
+
current_task = None
|
24 |
+
|
25 |
+
|
26 |
+
def box_blur(x, k):
|
27 |
+
x = Image.fromarray(x)
|
28 |
+
x = x.filter(ImageFilter.BoxBlur(k))
|
29 |
+
return np.array(x)
|
30 |
+
|
31 |
+
|
32 |
+
def max_filter_opencv(x, ksize=3):
|
33 |
+
# Use OpenCV maximum filter
|
34 |
+
# Make sure the input type is int16
|
35 |
+
return cv2.dilate(x, np.ones((ksize, ksize), dtype=np.int16))
|
36 |
+
|
37 |
+
|
38 |
+
def morphological_open(x):
|
39 |
+
# Convert array to int16 type via threshold operation
|
40 |
+
x_int16 = np.zeros_like(x, dtype=np.int16)
|
41 |
+
x_int16[x > 127] = 256
|
42 |
+
|
43 |
+
for i in range(32):
|
44 |
+
# Use int16 type to avoid overflow
|
45 |
+
maxed = max_filter_opencv(x_int16, ksize=3) - 8
|
46 |
+
x_int16 = np.maximum(maxed, x_int16)
|
47 |
+
|
48 |
+
# Clip negative values to 0 and convert back to uint8 type
|
49 |
+
x_uint8 = np.clip(x_int16, 0, 255).astype(np.uint8)
|
50 |
+
return x_uint8
|
51 |
+
|
52 |
+
|
53 |
+
def up255(x, t=0):
|
54 |
+
y = np.zeros_like(x).astype(np.uint8)
|
55 |
+
y[x > t] = 255
|
56 |
+
return y
|
57 |
+
|
58 |
+
|
59 |
+
def imsave(x, path):
|
60 |
+
x = Image.fromarray(x)
|
61 |
+
x.save(path)
|
62 |
+
|
63 |
+
|
64 |
+
def regulate_abcd(x, a, b, c, d):
|
65 |
+
H, W = x.shape[:2]
|
66 |
+
if a < 0:
|
67 |
+
a = 0
|
68 |
+
if a > H:
|
69 |
+
a = H
|
70 |
+
if b < 0:
|
71 |
+
b = 0
|
72 |
+
if b > H:
|
73 |
+
b = H
|
74 |
+
if c < 0:
|
75 |
+
c = 0
|
76 |
+
if c > W:
|
77 |
+
c = W
|
78 |
+
if d < 0:
|
79 |
+
d = 0
|
80 |
+
if d > W:
|
81 |
+
d = W
|
82 |
+
return int(a), int(b), int(c), int(d)
|
83 |
+
|
84 |
+
|
85 |
+
def compute_initial_abcd(x):
|
86 |
+
indices = np.where(x)
|
87 |
+
a = np.min(indices[0])
|
88 |
+
b = np.max(indices[0])
|
89 |
+
c = np.min(indices[1])
|
90 |
+
d = np.max(indices[1])
|
91 |
+
abp = (b + a) // 2
|
92 |
+
abm = (b - a) // 2
|
93 |
+
cdp = (d + c) // 2
|
94 |
+
cdm = (d - c) // 2
|
95 |
+
l = int(max(abm, cdm) * 1.15)
|
96 |
+
a = abp - l
|
97 |
+
b = abp + l + 1
|
98 |
+
c = cdp - l
|
99 |
+
d = cdp + l + 1
|
100 |
+
a, b, c, d = regulate_abcd(x, a, b, c, d)
|
101 |
+
return a, b, c, d
|
102 |
+
|
103 |
+
|
104 |
+
def solve_abcd(x, a, b, c, d, k):
|
105 |
+
k = float(k)
|
106 |
+
assert 0.0 <= k <= 1.0
|
107 |
+
|
108 |
+
H, W = x.shape[:2]
|
109 |
+
if k == 1.0:
|
110 |
+
return 0, H, 0, W
|
111 |
+
while True:
|
112 |
+
if b - a >= H * k and d - c >= W * k:
|
113 |
+
break
|
114 |
+
|
115 |
+
add_h = (b - a) < (d - c)
|
116 |
+
add_w = not add_h
|
117 |
+
|
118 |
+
if b - a == H:
|
119 |
+
add_w = True
|
120 |
+
|
121 |
+
if d - c == W:
|
122 |
+
add_h = True
|
123 |
+
|
124 |
+
if add_h:
|
125 |
+
a -= 1
|
126 |
+
b += 1
|
127 |
+
|
128 |
+
if add_w:
|
129 |
+
c -= 1
|
130 |
+
d += 1
|
131 |
+
|
132 |
+
a, b, c, d = regulate_abcd(x, a, b, c, d)
|
133 |
+
return a, b, c, d
|
134 |
+
|
135 |
+
|
136 |
+
def fooocus_fill(image, mask):
|
137 |
+
current_image = image.copy()
|
138 |
+
raw_image = image.copy()
|
139 |
+
area = np.where(mask < 127)
|
140 |
+
store = raw_image[area]
|
141 |
+
|
142 |
+
for k, repeats in [(512, 2), (256, 2), (128, 4), (64, 4), (33, 8), (15, 8), (5, 16), (3, 16)]:
|
143 |
+
for _ in range(repeats):
|
144 |
+
current_image = box_blur(current_image, k)
|
145 |
+
current_image[area] = store
|
146 |
+
|
147 |
+
return current_image
|
148 |
+
|
149 |
+
|
150 |
+
class InpaintWorker:
|
151 |
+
def __init__(self, image, mask, use_fill=True, k=0.618):
|
152 |
+
a, b, c, d = compute_initial_abcd(mask > 0)
|
153 |
+
a, b, c, d = solve_abcd(mask, a, b, c, d, k=k)
|
154 |
+
|
155 |
+
# interested area
|
156 |
+
self.interested_area = (a, b, c, d)
|
157 |
+
self.interested_mask = mask[a:b, c:d]
|
158 |
+
self.interested_image = image[a:b, c:d]
|
159 |
+
|
160 |
+
# super resolution
|
161 |
+
if get_image_shape_ceil(self.interested_image) < 1024:
|
162 |
+
self.interested_image = perform_upscale(self.interested_image)
|
163 |
+
|
164 |
+
# resize to make images ready for diffusion
|
165 |
+
self.interested_image = set_image_shape_ceil(self.interested_image, 1024)
|
166 |
+
self.interested_fill = self.interested_image.copy()
|
167 |
+
H, W, C = self.interested_image.shape
|
168 |
+
|
169 |
+
# process mask
|
170 |
+
self.interested_mask = up255(resample_image(self.interested_mask, W, H), t=127)
|
171 |
+
|
172 |
+
# compute filling
|
173 |
+
if use_fill:
|
174 |
+
self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask)
|
175 |
+
|
176 |
+
# soft pixels
|
177 |
+
self.mask = morphological_open(mask)
|
178 |
+
self.image = image
|
179 |
+
|
180 |
+
# ending
|
181 |
+
self.latent = None
|
182 |
+
self.latent_after_swap = None
|
183 |
+
self.swapped = False
|
184 |
+
self.latent_mask = None
|
185 |
+
self.inpaint_head_feature = None
|
186 |
+
return
|
187 |
+
|
188 |
+
def load_latent(self, latent_fill, latent_mask, latent_swap=None):
|
189 |
+
self.latent = latent_fill
|
190 |
+
self.latent_mask = latent_mask
|
191 |
+
self.latent_after_swap = latent_swap
|
192 |
+
return
|
193 |
+
|
194 |
+
def patch(self, inpaint_head_model_path, inpaint_latent, inpaint_latent_mask, model):
|
195 |
+
global inpaint_head_model
|
196 |
+
|
197 |
+
if inpaint_head_model is None:
|
198 |
+
inpaint_head_model = InpaintHead()
|
199 |
+
sd = torch.load(inpaint_head_model_path, map_location='cpu')
|
200 |
+
inpaint_head_model.load_state_dict(sd)
|
201 |
+
|
202 |
+
feed = torch.cat([
|
203 |
+
inpaint_latent_mask,
|
204 |
+
model.model.process_latent_in(inpaint_latent)
|
205 |
+
], dim=1)
|
206 |
+
|
207 |
+
inpaint_head_model.to(device=feed.device, dtype=feed.dtype)
|
208 |
+
inpaint_head_feature = inpaint_head_model(feed)
|
209 |
+
|
210 |
+
def input_block_patch(h, transformer_options):
|
211 |
+
if transformer_options["block"][1] == 0:
|
212 |
+
h = h + inpaint_head_feature.to(h)
|
213 |
+
return h
|
214 |
+
|
215 |
+
m = model.clone()
|
216 |
+
m.set_model_input_block_patch(input_block_patch)
|
217 |
+
return m
|
218 |
+
|
219 |
+
def swap(self):
|
220 |
+
if self.swapped:
|
221 |
+
return
|
222 |
+
|
223 |
+
if self.latent is None:
|
224 |
+
return
|
225 |
+
|
226 |
+
if self.latent_after_swap is None:
|
227 |
+
return
|
228 |
+
|
229 |
+
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
|
230 |
+
self.swapped = True
|
231 |
+
return
|
232 |
+
|
233 |
+
def unswap(self):
|
234 |
+
if not self.swapped:
|
235 |
+
return
|
236 |
+
|
237 |
+
if self.latent is None:
|
238 |
+
return
|
239 |
+
|
240 |
+
if self.latent_after_swap is None:
|
241 |
+
return
|
242 |
+
|
243 |
+
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
|
244 |
+
self.swapped = False
|
245 |
+
return
|
246 |
+
|
247 |
+
def color_correction(self, img):
|
248 |
+
fg = img.astype(np.float32)
|
249 |
+
bg = self.image.copy().astype(np.float32)
|
250 |
+
w = self.mask[:, :, None].astype(np.float32) / 255.0
|
251 |
+
y = fg * w + bg * (1 - w)
|
252 |
+
return y.clip(0, 255).astype(np.uint8)
|
253 |
+
|
254 |
+
def post_process(self, img):
|
255 |
+
a, b, c, d = self.interested_area
|
256 |
+
content = resample_image(img, d - c, b - a)
|
257 |
+
result = self.image.copy()
|
258 |
+
result[a:b, c:d] = content
|
259 |
+
result = self.color_correction(result)
|
260 |
+
return result
|
261 |
+
|
262 |
+
def visualize_mask_processing(self):
|
263 |
+
return [self.interested_fill, self.interested_mask, self.interested_image]
|
264 |
+
|