File size: 16,341 Bytes
3953219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import os
import yaml
import munch
import torch
import ignite
import monai
import shutil
import pandas as pd

from typing import Union, List, Callable
from ignite.contrib.handlers.tqdm_logger import ProgressBar
from monai.handlers import (
    CheckpointSaver,
    StatsHandler,
    TensorBoardStatsHandler,
    TensorBoardImageHandler,
    ValidationHandler,
    from_engine,
    MeanDice,
    EarlyStopHandler,
    MetricLogger,
    MetricsSaver
)

from .data import segmentation_dataloaders
from .model import get_model
from .optimizer import get_optimizer
from .loss import get_loss
from .transforms import get_val_post_transforms
from .utils import USE_AMP

def loss_logger(engine): 
    "write loss and lr of each iteration/epoch to file"
    iteration=engine.state.iteration
    epoch=engine.state.epoch
    loss=[o['loss'] for o in engine.state.output]
    loss=sum(loss)/len(loss)
    lr=engine.optimizer.param_groups[0]['lr']
    log_file=os.path.join(engine.config.log_dir, 'train_logs.csv')
    if not os.path.exists(log_file): 
        with open(log_file, 'w+') as f: 
            f.write('iteration,epoch,loss,lr\n')
    with open(log_file, 'a') as f: 
        f.write(f'{iteration},{epoch},{loss},{lr}\n')
        
def metric_logger(engine): 
    "write `metrics` after each epoch to file"
    if engine.state.epoch > 1: # only key metric is calcualted in 1st epoch, needs fix
        metric_names=[k for k in engine.state.metrics.keys()]
        metrics=[str(engine.state.metrics[mn]) for mn in metric_names]
        log_file=os.path.join(engine.config.log_dir, 'metric_logs.csv')
        if not os.path.exists(log_file): 
            with open(log_file, 'w+') as f: 
                f.write(','.join(metric_names) + '\n')
        with open(log_file, 'a') as f: 
            f.write(','.join(metrics) + '\n')
        
def pred_logger(engine):
    "save `pred` each time metric improves"
    epoch=engine.state.epoch
    root = os.path.join(engine.config.out_dir, 'preds')
    if not os.path.exists(root): 
        os.makedirs(root) 
        torch.save(
            engine.state.output[0]['label'], 
            os.path.join(root, f'label.pt')
        )
        torch.save(
            engine.state.output[0]['image'], 
            os.path.join(root, f'image.pt')
        )
        
    if epoch==engine.state.best_metric_epoch:
        torch.save(
            engine.state.output[0]['pred'], 
            os.path.join(root, f'pred_epoch_{epoch}.pt')
        )

    
def get_val_handlers(
    network: torch.nn.Module,
    config: dict
    ) -> list:
    """Create default handlers for model validation
    Args: 
        network: 
            nn.Module subclass, the model to train
    
    Returns:
        a list of default handlers for validation: [
            StatsHandler: 
                ???
            TensorBoardStatsHandler: 
                Save loss from validation to `config.log_dir`, allow logging with TensorBoard
            CheckpointSaver: 
                Save best model to `config.model_dir`
        ]
    """
    
    val_handlers=[      
        StatsHandler(
            tag_name="metric_logger",
            epoch_print_logger=metric_logger,
            output_transform=lambda x: None
        ),
        StatsHandler(
            tag_name="pred_logger",
            epoch_print_logger=pred_logger,
            output_transform=lambda x: None
        ),
        TensorBoardStatsHandler(
            log_dir=config.log_dir, 
            # tag_name="val_mean_dice",
            output_transform=lambda x: None
        ),
        TensorBoardImageHandler(
            log_dir=config.log_dir,
            batch_transform=from_engine(["image", "label"]),
            output_transform=from_engine(["pred"]),
        ),
        CheckpointSaver(
            save_dir=config.model_dir, 
            save_dict={f"network_{config.run_id}": network}, 
            save_key_metric=True
        ),

    ]
    
    return val_handlers


def get_train_handlers(
    evaluator: monai.engines.SupervisedEvaluator,
    config: dict
    ) -> list: 
    """Create default handlers for model training
    Args: 
        evaluator: an engine of type `monai.engines.SupervisedEvaluator` for evaluations
        every epoch
        
    Returns:
        list of default handlers for training: [
            ValidationHandler:
                Allows model validation every epoch
            StatsHandler:
                ???
            TensorBoardStatsHandler: 
                Save loss from validation to `config.log_dir`, allow logging with TensorBoard
        ]
    """
    
    train_handlers=[
        ValidationHandler(
            validator=evaluator, 
            interval=1, 
            epoch_level=True
        ),
        StatsHandler(
            tag_name="train_loss", 
            output_transform=from_engine(
                ["loss"], 
                first=True
            )
        ),
        StatsHandler(
            tag_name='loss_logger', 
            iteration_print_logger=loss_logger
        ), 
        TensorBoardStatsHandler(
            log_dir=config.log_dir,
            tag_name="train_loss",
            output_transform=from_engine(
                ["loss"], 
                first=True
            ),
        )
    ]
    
    return train_handlers

def get_evaluator(
    config: dict,
    device: torch.device , 
    network: torch.nn.Module, 
    val_data_loader: monai.data.dataloader.DataLoader, 
    val_post_transforms: monai.transforms.compose.Compose,
    val_handlers: Union[Callable, List]=get_val_handlers
) -> monai.engines.SupervisedEvaluator: 
    
    """Create default evaluator for training of a segmentation model
    Args: 
        device: 
            torch.cuda.device for model and engine
        network: 
            nn.Module subclass, the model to train
        val_data_loader: 
            Validation data loader, `monai.data.dataloader.DataLoader` subclass
        val_post_transforms: 
            function to create transforms OR composed transforms
        val_handlers: 
            function to create handerls OR List of handlers
            
    Returns: 
        default evaluator for segmentation of type `monai.engines.SupervisedEvaluator`
    """
    
    if callable(val_handlers): val_handlers=val_handlers()
    
    evaluator=monai.engines.SupervisedEvaluator(
        device=device,
        val_data_loader=val_data_loader,
        network=network,
        inferer=monai.inferers.SlidingWindowInferer(
            roi_size=(96, 96, 96), 
            sw_batch_size=4, 
            overlap=0.5
        ),
        postprocessing=val_post_transforms,
        key_val_metric={
            "val_mean_dice": MeanDice(
                include_background=False, 
                output_transform=from_engine(
                    ["pred", "label"]
                )
            )
        },
        val_handlers=val_handlers,
        # if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP evaluation
        amp=USE_AMP,
    )
    evaluator.config=config
    return evaluator


class SegmentationTrainer(monai.engines.SupervisedTrainer): 
    "Default Trainer für supervised segmentation task"
    def __init__(self, 
                 config: dict,
                 progress_bar: bool=True, 
                 early_stopping: bool=True, 
                 metrics: list=["MeanDice", "HausdorffDistance", "SurfaceDistance"],
                 save_latest_metrics: bool=True
                ):
        self.config=config
        self._prepare_dirs()
        self.config.device=torch.device(self.config.device)
        
        train_loader, val_loader=segmentation_dataloaders(
            config=config, 
            train=True, 
            valid=True, 
            test=False
        )
        network=get_model(config=config).to(config.device)
        optimizer=get_optimizer(
            network, 
            config=config
        )
        loss_fn=get_loss(config=config)
        val_post_transforms=get_val_post_transforms(config=config)
        val_handlers=get_val_handlers(
            network, 
            config=config
        )
        
        self.evaluator=get_evaluator(
            config=config,
            device=config.device, 
            network=network, 
            val_data_loader=val_loader, 
            val_post_transforms=val_post_transforms,
            val_handlers=val_handlers,

        )
        train_handlers=get_train_handlers(
            self.evaluator, 
            config=config
        )
        
        super().__init__(
            device=config.device, 
            max_epochs=self.config.training.max_epochs, 
            train_data_loader=train_loader,
            network=network,
            optimizer=optimizer, 
            loss_function=loss_fn, 
            inferer=monai.inferers.SimpleInferer(), 
            train_handlers=train_handlers,
            amp=USE_AMP,
        )        
        
        if early_stopping: self._add_early_stopping()
        if progress_bar: self._add_progress_bars()
        
        self.schedulers=[]
        # add different metrics dynamically
        for m in metrics: 
            getattr(monai.handlers, m)(
                include_background=False, 
                reduction="mean", 
                output_transform=from_engine(
                    ["pred", "label"]
                )
            ).attach(self.evaluator, m)
            
        self._add_metrics_logger()
        # add eval loss to metrics
        self._add_eval_loss()
        
        if save_latest_metrics: self._add_metrics_saver()

    
    def _prepare_dirs(self)->None:
        # create run_id, copy config file for reproducibility
        os.makedirs(self.config.run_id, exist_ok=True)
        with open(
            os.path.join(
                self.config.run_id, 
                'config.yaml'
            ), 'w+') as f: 
            f.write(yaml.safe_dump(self.config))
        
        # delete old log_dir
        if os.path.exists(self.config.log_dir): 
            shutil.rmtree(self.config.log_dir) 
            
    def _add_early_stopping(self) -> None: 
        early_stopping=EarlyStopHandler(
            patience=self.config.training.early_stopping_patience, 
            min_delta=1e-4,
            score_function=lambda x: x.state.metrics[x.state.key_metric_name], 
            trainer=self
        )
        self.evaluator.add_event_handler(
            ignite.engine.Events.COMPLETED, 
            early_stopping
        )
        
    def _add_metrics_logger(self) -> None: 
        self.metric_logger=MetricLogger(
            evaluator=self.evaluator
        )
        self.metric_logger.attach(self)

    def _add_progress_bars(self) -> None:
        trainer_pbar=ProgressBar()
        evaluator_pbar=ProgressBar(
            colour='green'
        )
        trainer_pbar.attach(
            self, 
            output_transform=lambda output:{
                'loss': torch.tensor(
                    [x['loss'] for x in output]
                ).mean()
            }
        )
        evaluator_pbar.attach(self.evaluator)
        
    def _add_metrics_saver(self) -> None:
        metric_saver=MetricsSaver(
            save_dir=self.config.out_dir,
            metric_details='*',
            batch_transform=self._get_meta_dict,
            delimiter=','
        )
        metric_saver.attach(self.evaluator)
    
    def _add_eval_loss(self)->None: 
        # TODO improve by adding this to val handlers
        eval_loss_handler=ignite.metrics.Loss(
            loss_fn=self.loss_function,
            output_transform=lambda output: (
                output[0]['pred'].unsqueeze(0), # add batch dim
                output[0]['label'].argmax(0, keepdim=True).unsqueeze(0) # reverse one-hot, add batch dim
            )
        )
        eval_loss_handler.attach(self.evaluator, 'eval_loss')
        
    def _get_meta_dict(self, batch) -> list: 
        "Get dict of metadata from engine. Needed as `batch_transform`"
        image_cols=self.config.data.image_cols
        image_name=image_cols[0] if isinstance(image_cols, list) else image_cols
        key=f'{image_name}_meta_dict'
        return [item[key] for item in batch]   
        
    def load_checkpoint(self, checkpoint=None): 
        if not checkpoint: 
            # get name of last checkpoint
            checkpoint = os.path.join(
                self.config.model_dir, 
                f"network_{self.config.run_id}_key_metric={self.evaluator.state.best_metric:.4f}.pt"
            )
        self.network.load_state_dict(
            torch.load(checkpoint)
        )
        
    def run(self, try_resume_from_checkpoint=True) -> None:
        """Run training, if `try_resume_from_checkpoint` tries to
        load previous checkpoint stored at `self.config.model_dir`
        """ 

        if try_resume_from_checkpoint: 
            checkpoints = [
                os.path.join(
                    self.config.model_dir, 
                    checkpoint_name
                ) for checkpoint_name in os.listdir(
                    self.config.model_dir
                ) if self.config.run_id in checkpoint_name
            ]
            try: 
                checkpoint = sorted(checkpoints)[-1]
                self.load_checkpoint(checkpoint)
                print(f"resuming from previous checkpoint at {checkpoint}")
            except: pass # train from scratch
        
        # train the model
        super().run()
        
        # make metrics and losses more accessible
        self.loss={
            "iter": [_iter for _iter, _ in  self.metric_logger.loss],
            "loss": [_loss for _, _loss in  self.metric_logger.loss],
            "epoch": [_iter // self.state.epoch_length for _iter, _ in  self.metric_logger.loss]
            }        
        
        self.metrics={
            k: [item[1] for item in self.metric_logger.metrics[k]] for k in 
                   self.evaluator.state.metric_details.keys()
        }
       # pd.DataFrame(self.metrics).to_csv(f"{self.config.out_dir}/metric_logs.csv")
       # pd.DataFrame(self.loss).to_csv(f"{self.config.out_dir}/loss_logs.csv") 
        
    def fit_one_cycle(self, try_resume_from_checkpoint=True) -> None:
        "Run training using one-cycle-policy"
        assert "FitOneCycle" not in self.schedulers, "FitOneCycle already added"
        fit_one_cycle=monai.handlers.LrScheduleHandler(
            torch.optim.lr_scheduler.OneCycleLR(
                optimizer=self.optimizer, 
                max_lr=self.optimizer.param_groups[0]['lr'], 
                steps_per_epoch=self.state.epoch_length, 
                epochs=self.state.max_epochs
            ),
            epoch_level=False,
            name="FitOneCycle"
        )
        fit_one_cycle.attach(self)
        self.schedulers += ["FitOneCycle"] 
    
    def reduce_lr_on_plateau(self, 
                             try_resume_from_checkpoint=True, 
                             factor=0.1, 
                             patience=10, 
                             min_lr=1e-10, 
                             verbose=True) -> None:
        "Reduce learning rate by `factor` every `patience` epochs if kex_metric does not improve"
        assert "ReduceLROnPlateau" not in self.schedulers, "ReduceLROnPlateau already added"
        reduce_lr_on_plateau=monai.handlers.LrScheduleHandler(
            torch.optim.lr_scheduler.ReduceLROnPlateau(
                optimizer=self.optimizer, 
                factor=factor, 
                patience=patience, 
                min_lr=min_lr, 
                verbose=verbose
            ), 
            print_lr=True,
            name='ReduceLROnPlateau', 
            epoch_level=True, 
            step_transform=lambda engine: engine.state.metrics[engine.state.key_metric_name],
        )
        reduce_lr_on_plateau.attach(self.evaluator)
        self.schedulers += ["ReduceLROnPlateau"] 

    def evaluate(self, checkpoint=None, dataloader=None): 
        "Run evaluation with best saved checkpoint"
        self.load_checkpoint(checkpoint)
        if dataloader: 
            self.evaluator.set_data(dataloader)
            self.evaluator.state.epoch_length=len(dataloader)
        self.evaluator.run()
        print(f"metrics saved to {self.config.out_dir}")