Spaces:
Runtime error
Runtime error
File size: 16,341 Bytes
3953219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import os
import yaml
import munch
import torch
import ignite
import monai
import shutil
import pandas as pd
from typing import Union, List, Callable
from ignite.contrib.handlers.tqdm_logger import ProgressBar
from monai.handlers import (
CheckpointSaver,
StatsHandler,
TensorBoardStatsHandler,
TensorBoardImageHandler,
ValidationHandler,
from_engine,
MeanDice,
EarlyStopHandler,
MetricLogger,
MetricsSaver
)
from .data import segmentation_dataloaders
from .model import get_model
from .optimizer import get_optimizer
from .loss import get_loss
from .transforms import get_val_post_transforms
from .utils import USE_AMP
def loss_logger(engine):
"write loss and lr of each iteration/epoch to file"
iteration=engine.state.iteration
epoch=engine.state.epoch
loss=[o['loss'] for o in engine.state.output]
loss=sum(loss)/len(loss)
lr=engine.optimizer.param_groups[0]['lr']
log_file=os.path.join(engine.config.log_dir, 'train_logs.csv')
if not os.path.exists(log_file):
with open(log_file, 'w+') as f:
f.write('iteration,epoch,loss,lr\n')
with open(log_file, 'a') as f:
f.write(f'{iteration},{epoch},{loss},{lr}\n')
def metric_logger(engine):
"write `metrics` after each epoch to file"
if engine.state.epoch > 1: # only key metric is calcualted in 1st epoch, needs fix
metric_names=[k for k in engine.state.metrics.keys()]
metrics=[str(engine.state.metrics[mn]) for mn in metric_names]
log_file=os.path.join(engine.config.log_dir, 'metric_logs.csv')
if not os.path.exists(log_file):
with open(log_file, 'w+') as f:
f.write(','.join(metric_names) + '\n')
with open(log_file, 'a') as f:
f.write(','.join(metrics) + '\n')
def pred_logger(engine):
"save `pred` each time metric improves"
epoch=engine.state.epoch
root = os.path.join(engine.config.out_dir, 'preds')
if not os.path.exists(root):
os.makedirs(root)
torch.save(
engine.state.output[0]['label'],
os.path.join(root, f'label.pt')
)
torch.save(
engine.state.output[0]['image'],
os.path.join(root, f'image.pt')
)
if epoch==engine.state.best_metric_epoch:
torch.save(
engine.state.output[0]['pred'],
os.path.join(root, f'pred_epoch_{epoch}.pt')
)
def get_val_handlers(
network: torch.nn.Module,
config: dict
) -> list:
"""Create default handlers for model validation
Args:
network:
nn.Module subclass, the model to train
Returns:
a list of default handlers for validation: [
StatsHandler:
???
TensorBoardStatsHandler:
Save loss from validation to `config.log_dir`, allow logging with TensorBoard
CheckpointSaver:
Save best model to `config.model_dir`
]
"""
val_handlers=[
StatsHandler(
tag_name="metric_logger",
epoch_print_logger=metric_logger,
output_transform=lambda x: None
),
StatsHandler(
tag_name="pred_logger",
epoch_print_logger=pred_logger,
output_transform=lambda x: None
),
TensorBoardStatsHandler(
log_dir=config.log_dir,
# tag_name="val_mean_dice",
output_transform=lambda x: None
),
TensorBoardImageHandler(
log_dir=config.log_dir,
batch_transform=from_engine(["image", "label"]),
output_transform=from_engine(["pred"]),
),
CheckpointSaver(
save_dir=config.model_dir,
save_dict={f"network_{config.run_id}": network},
save_key_metric=True
),
]
return val_handlers
def get_train_handlers(
evaluator: monai.engines.SupervisedEvaluator,
config: dict
) -> list:
"""Create default handlers for model training
Args:
evaluator: an engine of type `monai.engines.SupervisedEvaluator` for evaluations
every epoch
Returns:
list of default handlers for training: [
ValidationHandler:
Allows model validation every epoch
StatsHandler:
???
TensorBoardStatsHandler:
Save loss from validation to `config.log_dir`, allow logging with TensorBoard
]
"""
train_handlers=[
ValidationHandler(
validator=evaluator,
interval=1,
epoch_level=True
),
StatsHandler(
tag_name="train_loss",
output_transform=from_engine(
["loss"],
first=True
)
),
StatsHandler(
tag_name='loss_logger',
iteration_print_logger=loss_logger
),
TensorBoardStatsHandler(
log_dir=config.log_dir,
tag_name="train_loss",
output_transform=from_engine(
["loss"],
first=True
),
)
]
return train_handlers
def get_evaluator(
config: dict,
device: torch.device ,
network: torch.nn.Module,
val_data_loader: monai.data.dataloader.DataLoader,
val_post_transforms: monai.transforms.compose.Compose,
val_handlers: Union[Callable, List]=get_val_handlers
) -> monai.engines.SupervisedEvaluator:
"""Create default evaluator for training of a segmentation model
Args:
device:
torch.cuda.device for model and engine
network:
nn.Module subclass, the model to train
val_data_loader:
Validation data loader, `monai.data.dataloader.DataLoader` subclass
val_post_transforms:
function to create transforms OR composed transforms
val_handlers:
function to create handerls OR List of handlers
Returns:
default evaluator for segmentation of type `monai.engines.SupervisedEvaluator`
"""
if callable(val_handlers): val_handlers=val_handlers()
evaluator=monai.engines.SupervisedEvaluator(
device=device,
val_data_loader=val_data_loader,
network=network,
inferer=monai.inferers.SlidingWindowInferer(
roi_size=(96, 96, 96),
sw_batch_size=4,
overlap=0.5
),
postprocessing=val_post_transforms,
key_val_metric={
"val_mean_dice": MeanDice(
include_background=False,
output_transform=from_engine(
["pred", "label"]
)
)
},
val_handlers=val_handlers,
# if no FP16 support in GPU or PyTorch version < 1.6, will not enable AMP evaluation
amp=USE_AMP,
)
evaluator.config=config
return evaluator
class SegmentationTrainer(monai.engines.SupervisedTrainer):
"Default Trainer für supervised segmentation task"
def __init__(self,
config: dict,
progress_bar: bool=True,
early_stopping: bool=True,
metrics: list=["MeanDice", "HausdorffDistance", "SurfaceDistance"],
save_latest_metrics: bool=True
):
self.config=config
self._prepare_dirs()
self.config.device=torch.device(self.config.device)
train_loader, val_loader=segmentation_dataloaders(
config=config,
train=True,
valid=True,
test=False
)
network=get_model(config=config).to(config.device)
optimizer=get_optimizer(
network,
config=config
)
loss_fn=get_loss(config=config)
val_post_transforms=get_val_post_transforms(config=config)
val_handlers=get_val_handlers(
network,
config=config
)
self.evaluator=get_evaluator(
config=config,
device=config.device,
network=network,
val_data_loader=val_loader,
val_post_transforms=val_post_transforms,
val_handlers=val_handlers,
)
train_handlers=get_train_handlers(
self.evaluator,
config=config
)
super().__init__(
device=config.device,
max_epochs=self.config.training.max_epochs,
train_data_loader=train_loader,
network=network,
optimizer=optimizer,
loss_function=loss_fn,
inferer=monai.inferers.SimpleInferer(),
train_handlers=train_handlers,
amp=USE_AMP,
)
if early_stopping: self._add_early_stopping()
if progress_bar: self._add_progress_bars()
self.schedulers=[]
# add different metrics dynamically
for m in metrics:
getattr(monai.handlers, m)(
include_background=False,
reduction="mean",
output_transform=from_engine(
["pred", "label"]
)
).attach(self.evaluator, m)
self._add_metrics_logger()
# add eval loss to metrics
self._add_eval_loss()
if save_latest_metrics: self._add_metrics_saver()
def _prepare_dirs(self)->None:
# create run_id, copy config file for reproducibility
os.makedirs(self.config.run_id, exist_ok=True)
with open(
os.path.join(
self.config.run_id,
'config.yaml'
), 'w+') as f:
f.write(yaml.safe_dump(self.config))
# delete old log_dir
if os.path.exists(self.config.log_dir):
shutil.rmtree(self.config.log_dir)
def _add_early_stopping(self) -> None:
early_stopping=EarlyStopHandler(
patience=self.config.training.early_stopping_patience,
min_delta=1e-4,
score_function=lambda x: x.state.metrics[x.state.key_metric_name],
trainer=self
)
self.evaluator.add_event_handler(
ignite.engine.Events.COMPLETED,
early_stopping
)
def _add_metrics_logger(self) -> None:
self.metric_logger=MetricLogger(
evaluator=self.evaluator
)
self.metric_logger.attach(self)
def _add_progress_bars(self) -> None:
trainer_pbar=ProgressBar()
evaluator_pbar=ProgressBar(
colour='green'
)
trainer_pbar.attach(
self,
output_transform=lambda output:{
'loss': torch.tensor(
[x['loss'] for x in output]
).mean()
}
)
evaluator_pbar.attach(self.evaluator)
def _add_metrics_saver(self) -> None:
metric_saver=MetricsSaver(
save_dir=self.config.out_dir,
metric_details='*',
batch_transform=self._get_meta_dict,
delimiter=','
)
metric_saver.attach(self.evaluator)
def _add_eval_loss(self)->None:
# TODO improve by adding this to val handlers
eval_loss_handler=ignite.metrics.Loss(
loss_fn=self.loss_function,
output_transform=lambda output: (
output[0]['pred'].unsqueeze(0), # add batch dim
output[0]['label'].argmax(0, keepdim=True).unsqueeze(0) # reverse one-hot, add batch dim
)
)
eval_loss_handler.attach(self.evaluator, 'eval_loss')
def _get_meta_dict(self, batch) -> list:
"Get dict of metadata from engine. Needed as `batch_transform`"
image_cols=self.config.data.image_cols
image_name=image_cols[0] if isinstance(image_cols, list) else image_cols
key=f'{image_name}_meta_dict'
return [item[key] for item in batch]
def load_checkpoint(self, checkpoint=None):
if not checkpoint:
# get name of last checkpoint
checkpoint = os.path.join(
self.config.model_dir,
f"network_{self.config.run_id}_key_metric={self.evaluator.state.best_metric:.4f}.pt"
)
self.network.load_state_dict(
torch.load(checkpoint)
)
def run(self, try_resume_from_checkpoint=True) -> None:
"""Run training, if `try_resume_from_checkpoint` tries to
load previous checkpoint stored at `self.config.model_dir`
"""
if try_resume_from_checkpoint:
checkpoints = [
os.path.join(
self.config.model_dir,
checkpoint_name
) for checkpoint_name in os.listdir(
self.config.model_dir
) if self.config.run_id in checkpoint_name
]
try:
checkpoint = sorted(checkpoints)[-1]
self.load_checkpoint(checkpoint)
print(f"resuming from previous checkpoint at {checkpoint}")
except: pass # train from scratch
# train the model
super().run()
# make metrics and losses more accessible
self.loss={
"iter": [_iter for _iter, _ in self.metric_logger.loss],
"loss": [_loss for _, _loss in self.metric_logger.loss],
"epoch": [_iter // self.state.epoch_length for _iter, _ in self.metric_logger.loss]
}
self.metrics={
k: [item[1] for item in self.metric_logger.metrics[k]] for k in
self.evaluator.state.metric_details.keys()
}
# pd.DataFrame(self.metrics).to_csv(f"{self.config.out_dir}/metric_logs.csv")
# pd.DataFrame(self.loss).to_csv(f"{self.config.out_dir}/loss_logs.csv")
def fit_one_cycle(self, try_resume_from_checkpoint=True) -> None:
"Run training using one-cycle-policy"
assert "FitOneCycle" not in self.schedulers, "FitOneCycle already added"
fit_one_cycle=monai.handlers.LrScheduleHandler(
torch.optim.lr_scheduler.OneCycleLR(
optimizer=self.optimizer,
max_lr=self.optimizer.param_groups[0]['lr'],
steps_per_epoch=self.state.epoch_length,
epochs=self.state.max_epochs
),
epoch_level=False,
name="FitOneCycle"
)
fit_one_cycle.attach(self)
self.schedulers += ["FitOneCycle"]
def reduce_lr_on_plateau(self,
try_resume_from_checkpoint=True,
factor=0.1,
patience=10,
min_lr=1e-10,
verbose=True) -> None:
"Reduce learning rate by `factor` every `patience` epochs if kex_metric does not improve"
assert "ReduceLROnPlateau" not in self.schedulers, "ReduceLROnPlateau already added"
reduce_lr_on_plateau=monai.handlers.LrScheduleHandler(
torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer=self.optimizer,
factor=factor,
patience=patience,
min_lr=min_lr,
verbose=verbose
),
print_lr=True,
name='ReduceLROnPlateau',
epoch_level=True,
step_transform=lambda engine: engine.state.metrics[engine.state.key_metric_name],
)
reduce_lr_on_plateau.attach(self.evaluator)
self.schedulers += ["ReduceLROnPlateau"]
def evaluate(self, checkpoint=None, dataloader=None):
"Run evaluation with best saved checkpoint"
self.load_checkpoint(checkpoint)
if dataloader:
self.evaluator.set_data(dataloader)
self.evaluator.state.epoch_length=len(dataloader)
self.evaluator.run()
print(f"metrics saved to {self.config.out_dir}") |