osbm commited on
Commit
1402f09
·
1 Parent(s): 33317f9

remove excess data

Browse files
data/brain1_kspace.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:30951c380dffe40b7c851f9631348f783ff6249d98ab17506a7b8f75f6b7286d
3
- size 419430528
 
 
 
 
data/brain2_kspace.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6b1d0cdd6d423aa9b67526803adb9e47263587e3501f379880eb5025aa15336b
3
- size 524288128
 
 
 
 
data/knee1_kspace.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a303497f5a0e3b1f6398455a2e1fa9b6a92e2699e5739b3b3767778e2ceb7f3
3
- size 68567168
 
 
 
 
data/knee2_kspace.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f7c0492267645e7f0fbd250f533728e91d5979fc626e388846fc48353bfe1793
3
- size 1028505728
 
 
 
 
data/prostate2_kspace.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fc06e928ddd938fefda0e82e295a03b89b14834b32b367bb7e538ffbf79a64ef
3
- size 1108377728
 
 
 
 
save_kspace_to_disk.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # hello fellow human, this script is used to save kspace data to disk
2
+ # You may ask why? Well, as it turns out having h5py read the entire .h5 file
3
+ # and then just accessing the kspace data as numpy array takes around 50 seconds for a single file
4
+ # and that's just too slow for me. So I'm going to save the kspace data to disk as numpy arrays
5
+
6
+ import h5py
7
+ import huggingface_hub as hfh
8
+ import numpy as np
9
+ # datasets
10
+ # osbm/fastmri-prostate
11
+ # osbm/fastmri-brain
12
+ # osbm/fastmri-knee
13
+
14
+ # files in the dataset
15
+ # prostate
16
+ # - training_T2_1/file_prostate_AXT2_0002.h5
17
+ # - training_T2_1/file_prostate_AXT2_0015.h5
18
+ # brain
19
+ # - multicoil_train/file_brain_AXFLAIR_200_6002442.h5
20
+ # - multicoil_train/file_brain_AXFLAIR_200_6002487.h5
21
+ # knee
22
+ # - singlecoil_train/file1000015.h5
23
+ # - multicoil_train/file1000015.h5
24
+
25
+ # Download files
26
+
27
+ file_paths = {
28
+ "prostate1": hfh.hf_hub_download(
29
+ repo_id="osbm/fastmri-prostate",
30
+ filename="training_T2_1/file_prostate_AXT2_0002.h5",
31
+ repo_type="dataset",
32
+ cache_dir="./data"
33
+ ),
34
+ "prostate2": hfh.hf_hub_download(
35
+ repo_id="osbm/fastmri-prostate",
36
+ filename="training_T2_1/file_prostate_AXT2_0015.h5",
37
+ repo_type="dataset",
38
+ cache_dir="./data"
39
+ ),
40
+ "brain1": hfh.hf_hub_download(
41
+ repo_id="osbm/fastmri-brain",
42
+ filename="multicoil_train/file_brain_AXFLAIR_200_6002442.h5",
43
+ repo_type="dataset",
44
+ cache_dir="./data"
45
+ ),
46
+ "brain2": hfh.hf_hub_download(
47
+ repo_id="osbm/fastmri-brain",
48
+ filename="multicoil_train/file_brain_AXFLAIR_200_6002487.h5",
49
+ repo_type="dataset",
50
+ cache_dir="./data"
51
+ ),
52
+ "knee1": hfh.hf_hub_download(
53
+ repo_id="osbm/fastmri-knee",
54
+ filename="singlecoil_train/file1000015.h5",
55
+ repo_type="dataset",
56
+ cache_dir="./data"
57
+ ),
58
+ "knee2": hfh.hf_hub_download(
59
+ repo_id="osbm/fastmri-knee",
60
+ filename="multicoil_train/file1000015.h5",
61
+ repo_type="dataset",
62
+ cache_dir="./data"
63
+ )
64
+ }
65
+
66
+ for key, file_path in file_paths.items():
67
+ print(f"{key}: {file_path}")
68
+
69
+ file = h5py.File(file_path, "r")
70
+ kspace = file["kspace"][()]
71
+
72
+ print(kspace.shape)
73
+ if key.startswith("prostate"):
74
+ kspace = kspace[0, :, :, :] + kspace[1, :, :, :]
75
+
76
+ print(kspace.shape)
77
+
78
+ np.save(f"./data/{key}_kspace.npy", kspace)
test.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastmri.data.subsample import create_mask_for_mask_type
2
+ from fastmri.data.transforms import apply_mask, to_tensor, center_crop
3
+ import numpy as np
4
+
5
+ mask_func =create_mask_for_mask_type(
6
+ mask_type_str="equispaced",
7
+ center_fractions=[0.37],
8
+ accelerations=[4]
9
+ )
10
+
11
+ kspace = np.load("data/prostate1_kspace.npy")
12
+ print(kspace.shape) # (34, 14, 640, 451)
13
+ kspace = to_tensor(kspace)
14
+ print(kspace.shape) # torch.Size([34, 14, 640, 451, 2])
15
+ subsampled_kspace, mask, num_low_frequencies = apply_mask(
16
+ kspace,
17
+ mask_func,
18
+ seed=1
19
+ )