Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Dict, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from fairseq import utils | |
from fairseq.incremental_decoding_utils import with_incremental_state | |
from fairseq.modules.fairseq_dropout import FairseqDropout | |
from torch import Tensor, nn | |
try: | |
from fairseq.model_parallel.megatron.mpu import ( | |
get_cuda_rng_tracker, | |
get_model_parallel_world_size, | |
ColumnParallelLinear, | |
RowParallelLinear, | |
) | |
has_megatron_submodule = True | |
except (ImportError, ModuleNotFoundError): | |
has_megatron_submodule = False | |
class ModelParallelMultiheadAttention(nn.Module): | |
"""Model parallel Multi-headed attention. | |
This performs the Multi-headed attention over multiple gpus. | |
See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. | |
""" | |
def __init__( | |
self, | |
embed_dim, | |
num_heads, | |
kdim=None, | |
vdim=None, | |
dropout=0.0, | |
bias=True, | |
self_attention=False, | |
encoder_decoder_attention=False, | |
): | |
super().__init__() | |
if not has_megatron_submodule: | |
raise ImportError( | |
"\n\nPlease install the megatron submodule:" | |
"\n\n git submodule update --init " | |
"fairseq/model_parallel/megatron" | |
) | |
self.embed_dim = embed_dim | |
self.kdim = kdim if kdim is not None else embed_dim | |
self.vdim = vdim if vdim is not None else embed_dim | |
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim | |
self.model_parallel_size = get_model_parallel_world_size() | |
self.num_heads_partition = num_heads // self.model_parallel_size | |
assert ( | |
self.num_heads_partition * self.model_parallel_size == num_heads | |
), "Number of heads must be divisible by model parallel size" | |
self.dropout_module = FairseqDropout( | |
dropout, module_name=self.__class__.__name__ | |
) | |
self.head_dim = embed_dim // num_heads | |
assert ( | |
self.head_dim * num_heads == self.embed_dim | |
), "embed_dim must be divisible by num_heads" | |
self.scaling = self.head_dim ** -0.5 | |
self.self_attention = self_attention | |
self.encoder_decoder_attention = encoder_decoder_attention | |
assert ( | |
not self.self_attention or self.qkv_same_dim | |
), "Self-attention requires query, key and value to be of the same size" | |
self.k_proj = ColumnParallelLinear( | |
self.kdim, embed_dim, bias=bias, gather_output=False | |
) | |
self.v_proj = ColumnParallelLinear( | |
self.vdim, embed_dim, bias=bias, gather_output=False | |
) | |
self.q_proj = ColumnParallelLinear( | |
embed_dim, embed_dim, bias=bias, gather_output=False | |
) | |
self.out_proj = RowParallelLinear( | |
embed_dim, embed_dim, bias=bias, input_is_parallel=True | |
) | |
def forward( | |
self, | |
query, | |
key: Optional[Tensor], | |
value: Optional[Tensor], | |
key_padding_mask: Optional[Tensor] = None, | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
static_kv: bool = False, | |
attn_mask: Optional[Tensor] = None, | |
**unused_kwargs, | |
) -> Tuple[Tensor, Optional[Tensor]]: | |
"""Input shape: Time x Batch x Channel | |
Args: | |
key_padding_mask (ByteTensor, optional): mask to exclude | |
keys that are pads, of shape `(batch, src_len)`, where | |
padding elements are indicated by 1s. | |
attn_mask (ByteTensor, optional): typically used to | |
implement causal attention, where the mask prevents the | |
attention from looking forward in time (default: None). | |
""" | |
tgt_len, bsz, embed_dim = query.size() | |
assert embed_dim == self.embed_dim | |
assert list(query.size()) == [tgt_len, bsz, embed_dim] | |
is_tpu = query.device.type == "xla" | |
if incremental_state is not None: | |
saved_state = self._get_input_buffer(incremental_state) | |
if saved_state is not None and "prev_key" in saved_state: | |
# previous time steps are cached - no need to recompute | |
# key and value if they are static | |
if static_kv: | |
assert self.encoder_decoder_attention and not self.self_attention | |
key = value = None | |
else: | |
saved_state = None | |
if self.self_attention: | |
q = self.q_proj(query) | |
k = self.k_proj(query) | |
v = self.v_proj(query) | |
elif self.encoder_decoder_attention: | |
# encoder-decoder attention | |
q = self.q_proj(query) | |
if key is None: | |
assert value is None | |
k = v = None | |
else: | |
k = self.k_proj(key) | |
v = self.v_proj(key) | |
else: | |
assert key is not None and value is not None | |
q = self.q_proj(query) | |
k = self.k_proj(key) | |
v = self.v_proj(value) | |
q *= self.scaling | |
q = ( | |
q.contiguous() | |
.view(tgt_len, bsz * self.num_heads_partition, self.head_dim) | |
.transpose(0, 1) | |
) | |
if k is not None: | |
k = ( | |
k.contiguous() | |
.view(-1, bsz * self.num_heads_partition, self.head_dim) | |
.transpose(0, 1) | |
) | |
if v is not None: | |
v = ( | |
v.contiguous() | |
.view(-1, bsz * self.num_heads_partition, self.head_dim) | |
.transpose(0, 1) | |
) | |
if saved_state is not None: | |
# saved states are stored with shape (bsz, num_heads_partition, seq_len, head_dim) | |
if "prev_key" in saved_state: | |
_prev_key = saved_state["prev_key"] | |
assert _prev_key is not None | |
prev_key = _prev_key.view( | |
bsz * self.num_heads_partition, -1, self.head_dim | |
) | |
if static_kv: | |
k = prev_key | |
else: | |
assert k is not None | |
k = torch.cat([prev_key, k], dim=1) | |
if "prev_value" in saved_state: | |
_prev_value = saved_state["prev_value"] | |
assert _prev_value is not None | |
prev_value = _prev_value.view( | |
bsz * self.num_heads_partition, -1, self.head_dim | |
) | |
if static_kv: | |
v = prev_value | |
else: | |
assert v is not None | |
v = torch.cat([prev_value, v], dim=1) | |
prev_key_padding_mask: Optional[Tensor] = None | |
if "prev_key_padding_mask" in saved_state: | |
prev_key_padding_mask = saved_state["prev_key_padding_mask"] | |
assert k is not None and v is not None | |
key_padding_mask = ( | |
ModelParallelMultiheadAttention._append_prev_key_padding_mask( | |
key_padding_mask=key_padding_mask, | |
prev_key_padding_mask=prev_key_padding_mask, | |
batch_size=bsz, | |
src_len=k.size(1), | |
static_kv=static_kv, | |
) | |
) | |
saved_state["prev_key"] = k.view( | |
bsz, self.num_heads_partition, -1, self.head_dim | |
) | |
saved_state["prev_value"] = v.view( | |
bsz, self.num_heads_partition, -1, self.head_dim | |
) | |
saved_state["prev_key_padding_mask"] = key_padding_mask | |
# In this branch incremental_state is never None | |
assert incremental_state is not None | |
incremental_state = self._set_input_buffer(incremental_state, saved_state) | |
assert k is not None | |
src_len = k.size(1) | |
# This is part of a workaround to get around fork/join parallelism | |
# not supporting Optional types. | |
if key_padding_mask is not None and key_padding_mask.dim() == 0: | |
key_padding_mask = None | |
if key_padding_mask is not None: | |
assert key_padding_mask.size(0) == bsz | |
assert key_padding_mask.size(1) == src_len | |
attn_weights = torch.bmm(q, k.transpose(1, 2)) | |
assert list(attn_weights.size()) == [ | |
bsz * self.num_heads_partition, | |
tgt_len, | |
src_len, | |
] | |
if attn_mask is not None: | |
attn_mask = attn_mask.unsqueeze(0) | |
attn_weights += attn_mask | |
if key_padding_mask is not None: | |
# don't attend to padding symbols | |
attn_weights = attn_weights.view( | |
bsz, self.num_heads_partition, tgt_len, src_len | |
) | |
if not is_tpu: | |
attn_weights = attn_weights.masked_fill( | |
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), | |
float("-inf"), | |
) | |
else: | |
attn_weights = attn_weights.transpose(0, 2) | |
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) | |
attn_weights = attn_weights.transpose(0, 2) | |
attn_weights = attn_weights.view( | |
bsz * self.num_heads_partition, tgt_len, src_len | |
) | |
attn_weights_float = utils.softmax(attn_weights, dim=-1) | |
attn_weights = attn_weights_float.type_as(attn_weights) | |
with get_cuda_rng_tracker().fork(): | |
attn_probs = self.dropout_module(attn_weights) | |
assert v is not None | |
attn = torch.bmm(attn_probs, v) | |
assert list(attn.size()) == [ | |
bsz * self.num_heads_partition, | |
tgt_len, | |
self.head_dim, | |
] | |
embed_dim_partition = embed_dim // self.model_parallel_size | |
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim_partition) | |
attn = self.out_proj(attn) | |
# return attn_weights None to keep the return type same as single gpu multihead attention | |
# This will be deprecated. | |
attn_weights: Optional[Tensor] = None | |
return attn, attn_weights | |
def _append_prev_key_padding_mask( | |
key_padding_mask: Optional[Tensor], | |
prev_key_padding_mask: Optional[Tensor], | |
batch_size: int, | |
src_len: int, | |
static_kv: bool, | |
) -> Optional[Tensor]: | |
# saved key padding masks have shape (bsz, seq_len) | |
if prev_key_padding_mask is not None and static_kv: | |
new_key_padding_mask = prev_key_padding_mask | |
elif prev_key_padding_mask is not None and key_padding_mask is not None: | |
new_key_padding_mask = torch.cat( | |
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 | |
) | |
# During incremental decoding, as the padding token enters and | |
# leaves the frame, there will be a time when prev or current | |
# is None | |
elif prev_key_padding_mask is not None: | |
filler = torch.zeros(batch_size, src_len - prev_key_padding_mask.size(1)) | |
if prev_key_padding_mask.is_cuda: | |
filler = filler.cuda() | |
new_key_padding_mask = torch.cat( | |
[prev_key_padding_mask.float(), filler.float()], dim=1 | |
) | |
elif key_padding_mask is not None: | |
filler = torch.zeros(batch_size, src_len - key_padding_mask.size(1)) | |
if key_padding_mask.is_cuda: | |
filler = filler.cuda() | |
new_key_padding_mask = torch.cat( | |
[filler.float(), key_padding_mask.float()], dim=1 | |
) | |
else: | |
new_key_padding_mask = prev_key_padding_mask | |
return new_key_padding_mask | |
def reorder_incremental_state( | |
self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order | |
): | |
"""Reorder buffered internal state (for incremental generation).""" | |
input_buffer = self._get_input_buffer(incremental_state) | |
if input_buffer is not None: | |
for k in input_buffer.keys(): | |
if input_buffer[k] is not None: | |
input_buffer[k] = input_buffer[k].index_select(0, new_order) | |
incremental_state = self._set_input_buffer(incremental_state, input_buffer) | |
return incremental_state | |
def _get_input_buffer( | |
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] | |
) -> Dict[str, Optional[Tensor]]: | |
result = self.get_incremental_state(incremental_state, "attn_state") | |
if result is not None: | |
return result | |
else: | |
empty_result: Dict[str, Optional[Tensor]] = {} | |
return empty_result | |
def _set_input_buffer( | |
self, | |
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], | |
buffer: Dict[str, Optional[Tensor]], | |
): | |
return self.set_incremental_state(incremental_state, "attn_state", buffer) | |