added faiss
Browse files
app.py
CHANGED
|
@@ -5,28 +5,42 @@ from setup import *
|
|
| 5 |
|
| 6 |
from PIL import Image
|
| 7 |
|
|
|
|
| 8 |
def show_result(search_request,
|
| 9 |
search_result,
|
| 10 |
img_dir,
|
| 11 |
container) :
|
| 12 |
|
| 13 |
-
# lorax = Image.open('img/Lorax.jpg')
|
| 14 |
-
# print(lorax.width, lorax.height)
|
| 15 |
-
# st.image(lorax, width = 250)
|
| 16 |
-
|
| 17 |
container.header("\"" +search_request+ "\" reminds me of :")
|
| 18 |
i = 0
|
| 19 |
-
for _ in range(0,
|
| 20 |
-
for col in container.columns(2)
|
|
|
|
|
|
|
| 21 |
image_name, comment, score = search_result[i]
|
| 22 |
-
col.image(img_dir + image_name, width = 300)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
if score != '' :
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
else :
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
i = i + 1
|
|
|
|
| 30 |
return
|
| 31 |
|
| 32 |
def show_landing() :
|
|
@@ -52,6 +66,13 @@ def show_landing() :
|
|
| 52 |
search_result,
|
| 53 |
IMAGE_DIR+'/',
|
| 54 |
results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
return
|
| 56 |
|
| 57 |
|
|
|
|
| 5 |
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
+
thumbnail_width = 300
|
| 9 |
def show_result(search_request,
|
| 10 |
search_result,
|
| 11 |
img_dir,
|
| 12 |
container) :
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
container.header("\"" +search_request+ "\" reminds me of :")
|
| 15 |
i = 0
|
| 16 |
+
for _ in range(0, 3):
|
| 17 |
+
for col in container.columns(2):
|
| 18 |
+
if i >= len(search_result):
|
| 19 |
+
break
|
| 20 |
image_name, comment, score = search_result[i]
|
|
|
|
| 21 |
|
| 22 |
+
# Загрузка изображения
|
| 23 |
+
image = Image.open(img_dir + image_name)
|
| 24 |
+
|
| 25 |
+
# Выравнивание изображения по ширине
|
| 26 |
+
image_width, image_height = image.size
|
| 27 |
+
aspect_ratio = thumbnail_width / image_width
|
| 28 |
+
new_height = int(image_height * aspect_ratio)
|
| 29 |
+
resized_image = image.resize((thumbnail_width, new_height), Image.ANTIALIAS)
|
| 30 |
+
|
| 31 |
+
# Добавление подписи
|
| 32 |
if score != '' :
|
| 33 |
+
sim_score = f"{float(100 * score):.2f}"
|
| 34 |
+
sim='similarity='+sim_score + "%"
|
| 35 |
+
col.markdown(comment)
|
| 36 |
+
col.markdown(f'<p style="font-size: 10px;">{sim}</p>', unsafe_allow_html=True)
|
| 37 |
else :
|
| 38 |
+
# Вывод изображения в контейнер
|
| 39 |
+
col.markdown(comment)
|
| 40 |
+
|
| 41 |
+
col.image(resized_image, width=thumbnail_width)
|
| 42 |
i = i + 1
|
| 43 |
+
|
| 44 |
return
|
| 45 |
|
| 46 |
def show_landing() :
|
|
|
|
| 66 |
search_result,
|
| 67 |
IMAGE_DIR+'/',
|
| 68 |
results)
|
| 69 |
+
|
| 70 |
+
if action.button('Find Relsease 3!') and os.path.exists(IMAGE_DIR) :
|
| 71 |
+
search_result = search3(search_request)
|
| 72 |
+
show_result(search_request,
|
| 73 |
+
search_result,
|
| 74 |
+
IMAGE_DIR+'/',
|
| 75 |
+
results)
|
| 76 |
return
|
| 77 |
|
| 78 |
|
dataframe.py
CHANGED
|
@@ -1,12 +1,11 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
| 3 |
|
| 4 |
-
def get_image_data() :
|
| 5 |
|
| 6 |
-
|
| 7 |
-
image_data_df = pd.read_csv ('data/output2.csv')
|
| 8 |
|
| 9 |
image_data_df['text_embeddings'] = image_data_df['text_embeddings'].apply(lambda x: np.fromstring(x[2:-2], sep=' ')).values
|
| 10 |
image_data_df['text_embeddings'] = image_data_df['text_embeddings'].apply(lambda x: np.reshape(x, (1, -1)))
|
| 11 |
|
| 12 |
-
return image_data_df
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
| 3 |
|
| 4 |
+
def get_image_data(csv_file) :
|
| 5 |
|
| 6 |
+
image_data_df = pd.read_csv (csv_file)
|
|
|
|
| 7 |
|
| 8 |
image_data_df['text_embeddings'] = image_data_df['text_embeddings'].apply(lambda x: np.fromstring(x[2:-2], sep=' ')).values
|
| 9 |
image_data_df['text_embeddings'] = image_data_df['text_embeddings'].apply(lambda x: np.reshape(x, (1, -1)))
|
| 10 |
|
| 11 |
+
return image_data_df
|
main.py
CHANGED
|
@@ -38,10 +38,29 @@ def search2(search_prompt : str) :
|
|
| 38 |
# Get model, processor & tokenizer
|
| 39 |
model, tokenizer = get_model_info(model_ID, device)
|
| 40 |
|
| 41 |
-
image_data_df = get_image_data()
|
| 42 |
|
| 43 |
return get_top_N_images(search_prompt,
|
| 44 |
data = image_data_df,
|
| 45 |
model=model, tokenizer=tokenizer,
|
| 46 |
device = device,
|
| 47 |
-
top_K=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
# Get model, processor & tokenizer
|
| 39 |
model, tokenizer = get_model_info(model_ID, device)
|
| 40 |
|
| 41 |
+
image_data_df = get_image_data('data/output2.csv')
|
| 42 |
|
| 43 |
return get_top_N_images(search_prompt,
|
| 44 |
data = image_data_df,
|
| 45 |
model=model, tokenizer=tokenizer,
|
| 46 |
device = device,
|
| 47 |
+
top_K=4)
|
| 48 |
+
|
| 49 |
+
def search3(search_prompt : str) :
|
| 50 |
+
|
| 51 |
+
# Set the device
|
| 52 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 53 |
+
|
| 54 |
+
# Define the model ID
|
| 55 |
+
model_ID = "openai/clip-vit-base-patch32"
|
| 56 |
+
|
| 57 |
+
# Get model, processor & tokenizer
|
| 58 |
+
model, tokenizer = get_model_info(model_ID, device)
|
| 59 |
+
|
| 60 |
+
image_data_df = get_image_data('data/output2.csv')
|
| 61 |
+
|
| 62 |
+
return faiss_get_top_N_images(search_prompt,
|
| 63 |
+
data = image_data_df,
|
| 64 |
+
model=model, tokenizer=tokenizer,
|
| 65 |
+
device = device,
|
| 66 |
+
top_K=4)
|
model.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
-
from transformers import
|
| 2 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
| 3 |
|
| 4 |
from dataframe import *
|
| 5 |
|
|
@@ -22,13 +23,13 @@ def get_single_text_embedding(text, model, tokenizer, device):
|
|
| 22 |
|
| 23 |
return embedding_as_np
|
| 24 |
|
| 25 |
-
def get_item_data(result, index) :
|
| 26 |
|
| 27 |
img_name = str(result['image_name'][index])
|
| 28 |
|
| 29 |
# TODO: add code to get the original comment
|
| 30 |
comment = str(result['comment'][index])
|
| 31 |
-
cos_sim = result[
|
| 32 |
|
| 33 |
return (img_name, comment, cos_sim)
|
| 34 |
|
|
@@ -36,29 +37,81 @@ def get_top_N_images(query,
|
|
| 36 |
data,
|
| 37 |
model, tokenizer,
|
| 38 |
device,
|
| 39 |
-
top_K=4
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
#
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import CLIPModel, CLIPTokenizer
|
| 2 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
+
import faiss
|
| 4 |
|
| 5 |
from dataframe import *
|
| 6 |
|
|
|
|
| 23 |
|
| 24 |
return embedding_as_np
|
| 25 |
|
| 26 |
+
def get_item_data(result, index, measure_column) :
|
| 27 |
|
| 28 |
img_name = str(result['image_name'][index])
|
| 29 |
|
| 30 |
# TODO: add code to get the original comment
|
| 31 |
comment = str(result['comment'][index])
|
| 32 |
+
cos_sim = result[measure_column][index]
|
| 33 |
|
| 34 |
return (img_name, comment, cos_sim)
|
| 35 |
|
|
|
|
| 37 |
data,
|
| 38 |
model, tokenizer,
|
| 39 |
device,
|
| 40 |
+
top_K=4) :
|
| 41 |
+
|
| 42 |
+
query_vect = get_single_text_embedding(query,
|
| 43 |
+
model, tokenizer,
|
| 44 |
+
device)
|
| 45 |
+
|
| 46 |
+
# Relevant columns
|
| 47 |
+
relevant_cols = ["comment", "image_name", "cos_sim"]
|
| 48 |
+
|
| 49 |
+
# Run similarity Search
|
| 50 |
+
data["cos_sim"] = data["text_embeddings"].apply(lambda x: cosine_similarity(query_vect, x))# line 17
|
| 51 |
+
data["cos_sim"] = data["cos_sim"].apply(lambda x: x[0][0])
|
| 52 |
+
|
| 53 |
+
data_sorted = data.sort_values(by='cos_sim', ascending=False)
|
| 54 |
+
non_repeated_images = ~data_sorted["image_name"].duplicated()
|
| 55 |
+
most_similar_articles = data_sorted[non_repeated_images].head(top_K)
|
| 56 |
+
|
| 57 |
+
"""
|
| 58 |
+
Retrieve top_K (4 is default value) articles similar to the query
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
result_df = most_similar_articles[relevant_cols].reset_index()
|
| 62 |
+
|
| 63 |
+
return [get_item_data(result_df, i, 'cos_sim') for i in range(len(result_df))]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
###### with faiss ###########
|
| 67 |
+
|
| 68 |
+
import faiss
|
| 69 |
+
import numpy as np
|
| 70 |
+
|
| 71 |
+
def faiss_add_index_cos(df, column):
|
| 72 |
+
|
| 73 |
+
# Get the embeddings from the specified column
|
| 74 |
+
embeddings = np.vstack(df[column].values).astype(np.float32) # Convert to float32
|
| 75 |
+
|
| 76 |
+
# Create an index
|
| 77 |
+
index = faiss.IndexFlatIP(embeddings.shape[1])
|
| 78 |
+
print("<<<<faiss_ after normalize")
|
| 79 |
+
faiss.normalize_L2(embeddings)
|
| 80 |
+
print("<<<<faiss_ after normalize")
|
| 81 |
+
|
| 82 |
+
index.train(embeddings)
|
| 83 |
+
print("<<<<faiss_ after index.train")
|
| 84 |
+
|
| 85 |
+
# Add the embeddings to the index
|
| 86 |
+
index.add(embeddings)
|
| 87 |
+
print("<<<<faiss_add")
|
| 88 |
+
|
| 89 |
+
# Return the index
|
| 90 |
+
return index
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def faiss_get_top_N_images(query,
|
| 94 |
+
data,
|
| 95 |
+
model, tokenizer,
|
| 96 |
+
device,
|
| 97 |
+
top_K=4) :
|
| 98 |
+
|
| 99 |
+
query_vect = get_single_text_embedding(query,
|
| 100 |
+
model, tokenizer,
|
| 101 |
+
device)
|
| 102 |
+
# Relevant columns
|
| 103 |
+
relevant_cols = ["comment", "image_name", "similarity"]
|
| 104 |
+
|
| 105 |
+
#faiss search with cos similarity
|
| 106 |
+
index = faiss_add_index_cos(data, column="text_embeddings")
|
| 107 |
+
|
| 108 |
+
faiss.normalize_L2(query_vect)
|
| 109 |
+
D, I = index.search(query_vect, len(data))
|
| 110 |
+
|
| 111 |
+
data_sorted = data.iloc[I.flatten()]
|
| 112 |
+
|
| 113 |
+
non_repeated_images = ~data_sorted["image_name"].duplicated()
|
| 114 |
+
most_similar_articles = data_sorted[non_repeated_images].head(top_K)
|
| 115 |
+
|
| 116 |
+
result_df = most_similar_articles[relevant_cols].reset_index(), D.reshape(-1,1)[:top_K]
|
| 117 |
+
return [get_item_data(result_df, i, 'similarity') for i in range(len(result_df))]
|