Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""Bird_Species_Interface.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1phGfuDAxvDjzxX7jYYCg92VjPhua9u1_
|
8 |
-
"""
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
import gradio as gr
|
13 |
-
import numpy as np
|
14 |
-
import tensorflow_hub as hub
|
15 |
-
import tensorflow as tf
|
16 |
-
from tensorflow.keras.models import load_model
|
17 |
-
import cv2
|
18 |
-
|
19 |
-
import gradio as gr
|
20 |
-
import tensorflow as tf
|
21 |
-
import cv2
|
22 |
-
|
23 |
-
# Define a dictionary to map the custom layer to its implementation
|
24 |
-
custom_objects = {'KerasLayer': hub.KerasLayer}
|
25 |
-
|
26 |
-
# Load your model (ensure the path is correct) and provide the custom_objects dictionary
|
27 |
-
model = tf.keras.models.load_model('model.h5', custom_objects=custom_objects)
|
28 |
-
|
29 |
-
# Define a function to preprocess the image
|
30 |
-
def preprocess_image(image):
|
31 |
-
img = cv2.resize(image, (224, 224))
|
32 |
-
img = img / 255.0 # Normalize pixel values to [0, 1]
|
33 |
-
return img
|
34 |
-
|
35 |
-
# Define the prediction function
|
36 |
-
def predict_image(image):
|
37 |
-
img = preprocess_image(image)
|
38 |
-
img = img[np.newaxis, ...] # Add batch dimension
|
39 |
-
prediction = model.predict(img)
|
40 |
-
predicted_class = tf.argmax(prediction, axis=1).numpy()[0]
|
41 |
-
confidence = tf.reduce_max(prediction).numpy()
|
42 |
-
return f"Class: {predicted_class}, Confidence: {confidence:.4f}"
|
43 |
-
|
44 |
-
# Define Gradio interface
|
45 |
-
input_image = gr.inputs.Image(shape=(224, 224))
|
46 |
-
output_label = gr.outputs.Label()
|
47 |
-
|
48 |
-
gr.Interface(
|
49 |
-
fn=predict_image,
|
50 |
-
inputs=input_image,
|
51 |
-
outputs=output_label,
|
52 |
-
live=True
|
53 |
-
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|