BenchmarkBot commited on
Commit
c3c27bd
Β·
1 Parent(s): 014409b

allow quantized models on plot

Browse files
Files changed (1) hide show
  1. app.py +14 -9
app.py CHANGED
@@ -82,6 +82,11 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
82
  lambda x: TRUE_WEIGHT_CLASSES[x] if x in TRUE_WEIGHT_CLASSES else x
83
  )
84
 
 
 
 
 
 
85
  # add optimizations
86
  merged_df["optimizations"] = merged_df[
87
  ["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"]
@@ -101,6 +106,8 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
101
  axis=1,
102
  )
103
 
 
 
104
  # create composite score
105
  score_distance = 100 - merged_df["best_score"]
106
  # normalize latency between 0 and 100
@@ -108,19 +115,16 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
108
  merged_df["tradeoff"] = (score_distance**2 + latency_distance**2) ** 0.5
109
  merged_df["tradeoff"] = merged_df["tradeoff"].round(2)
110
 
111
- # add * to quantized models
112
- merged_df.loc[
113
- merged_df["optimizations"].str.contains("LLM.int8|LLM.fp4"), "best_score"
114
- ] = merged_df.loc[
115
- merged_df["optimizations"].str.contains("LLM.int8|LLM.fp4"), "best_score"
116
- ].apply(
117
- lambda x: f"{x}*"
118
- )
119
-
120
  return merged_df
121
 
122
 
123
  def get_benchmark_table(bench_df):
 
 
 
 
 
 
124
  # sort
125
  bench_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True)
126
  # filter
@@ -132,6 +136,7 @@ def get_benchmark_table(bench_df):
132
  bench_df["Best Scored Model πŸ†"] = bench_df["Best Scored Model πŸ†"].apply(
133
  process_model_name
134
  )
 
135
  return bench_df
136
 
137
 
 
82
  lambda x: TRUE_WEIGHT_CLASSES[x] if x in TRUE_WEIGHT_CLASSES else x
83
  )
84
 
85
+ # convert peak memory to int
86
+ merged_df["forward.peak_memory(MB)"] = merged_df["forward.peak_memory(MB)"].apply(
87
+ lambda x: int(x)
88
+ )
89
+
90
  # add optimizations
91
  merged_df["optimizations"] = merged_df[
92
  ["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"]
 
106
  axis=1,
107
  )
108
 
109
+ merged_df["quantized"] = merged_df["optimizations"].str.contains("LLM.int8|LLM.fp4")
110
+
111
  # create composite score
112
  score_distance = 100 - merged_df["best_score"]
113
  # normalize latency between 0 and 100
 
115
  merged_df["tradeoff"] = (score_distance**2 + latency_distance**2) ** 0.5
116
  merged_df["tradeoff"] = merged_df["tradeoff"].round(2)
117
 
 
 
 
 
 
 
 
 
 
118
  return merged_df
119
 
120
 
121
  def get_benchmark_table(bench_df):
122
+ # add * to quantized models score
123
+ bench_df["best_score"] = bench_df.apply(
124
+ lambda x: f"{x['best_score']}**" if x["quantized"] else x["best_score"],
125
+ axis=1,
126
+ )
127
+
128
  # sort
129
  bench_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True)
130
  # filter
 
136
  bench_df["Best Scored Model πŸ†"] = bench_df["Best Scored Model πŸ†"].apply(
137
  process_model_name
138
  )
139
+
140
  return bench_df
141
 
142