Spaces:
Running
Running
baptistecolle
HF staff
Add torchao int4 weight only quantization as an option (#34)
8766911
verified
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
QUANT_DATA = [ | |
# open llm | |
"Model π€", | |
"DType π₯", | |
"Backend π", | |
"Params (B)", | |
"Architecture ποΈ", | |
"Open LLM Score (%)", | |
# deployment settings | |
"DType π₯", | |
"Backend π", | |
"Quantization ποΈ", | |
"Quantization ποΈ Custom Kernel", | |
# primary measurements | |
"Prefill (s)", | |
"Prefill (s) Custom Kernel", | |
"Decode (tokens/s)", | |
"Decode (tokens/s) Custom Kernel", | |
# speedups | |
"Prefill Speedup (%)", | |
"Decode Speedup (%)", | |
] | |
def get_quant_df(llm_perf_df): | |
copy_df = llm_perf_df.copy() | |
# seperate vanilla GPTQ experiments from Custom Kernel experiments | |
vanilla_df = copy_df[ | |
(copy_df["Backend π"] == "pytorch") | |
& (copy_df["DType π₯"] == "float16") | |
& (copy_df["Quantization ποΈ"] == "Unquantized") | |
] | |
exllamav1_df = copy_df[(copy_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV1")] | |
exllamav2_df = copy_df[(copy_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV2")] | |
gemm_df = copy_df[(copy_df["Quantization ποΈ"] == "AWQ.4bit+GEMM")] | |
gemv_df = copy_df[(copy_df["Quantization ποΈ"] == "AWQ.4bit+GEMV")] | |
torchao_df = copy_df[(copy_df["Quantization ποΈ"] == "torchao.4bit")] | |
# merge the three dataframes | |
exllamav1_df = pd.merge( | |
vanilla_df, | |
exllamav1_df, | |
on=["Model π€"], | |
suffixes=["", " Custom Kernel"], | |
) | |
exllamav2_df = pd.merge( | |
vanilla_df, | |
exllamav2_df, | |
on=["Model π€"], | |
suffixes=["", " Custom Kernel"], | |
) | |
gemm_df = pd.merge( | |
vanilla_df, | |
gemm_df, | |
on=["Model π€"], | |
suffixes=["", " Custom Kernel"], | |
) | |
gemv_df = pd.merge( | |
vanilla_df, | |
gemv_df, | |
on=["Model π€"], | |
suffixes=["", " Custom Kernel"], | |
) | |
torchao_df = pd.merge( | |
vanilla_df, | |
torchao_df, | |
on=["Model π€"], | |
suffixes=["", " Custom Kernel"], | |
) | |
# concat the two dataframes row-wise | |
quant_df = pd.concat([exllamav1_df, exllamav2_df, gemm_df, gemv_df, torchao_df]) | |
# compute speedups | |
quant_df["Prefill Speedup (%)"] = ( | |
(quant_df["Prefill (s)"] / quant_df["Prefill (s) Custom Kernel"]) * 100 | |
).round(2) - 100 | |
quant_df["Decode Speedup (%)"] = ( | |
(quant_df["Decode (tokens/s) Custom Kernel"] / quant_df["Decode (tokens/s)"]) | |
* 100 | |
).round(2) - 100 | |
# filter speedups > 1000% | |
quant_df = quant_df[quant_df["Prefill Speedup (%)"] < 1000] | |
quant_df = quant_df[quant_df["Decode Speedup (%)"] < 1000] | |
return quant_df | |
def get_quant_decode_fig(llm_perf_df): | |
quant_df = get_quant_df(llm_perf_df) | |
# plot | |
decode_fig = px.box( | |
quant_df, | |
x="Architecture ποΈ", | |
y="Decode Speedup (%)", | |
color_discrete_sequence=px.colors.qualitative.Light24, | |
custom_data=QUANT_DATA, | |
color="Quantization ποΈ Custom Kernel", | |
points="all", | |
) | |
# add hover data | |
decode_fig.update_traces( | |
hovertemplate="<br>".join( | |
[ | |
f"<b>{column}:</b> %{{customdata[{i}]}}" | |
for i, column in enumerate(QUANT_DATA) | |
] | |
) | |
) | |
# add layout | |
decode_fig.update_layout( | |
title={ | |
"text": "Decode Speedup per Architecture", | |
"y": 0.95, | |
"x": 0.5, | |
"xanchor": "center", | |
"yanchor": "top", | |
}, | |
xaxis_title="LLM Architecture", | |
yaxis_title="Decode Speedup (%)", | |
legend_title="Quantization Scheme", | |
width=1200, | |
height=600, | |
) | |
return decode_fig | |
def get_quant_prefill_fig(llm_perf_df): | |
quant_df = get_quant_df(llm_perf_df) | |
# plot | |
prefill_fig = px.box( | |
quant_df, | |
x="Architecture ποΈ", | |
y="Prefill Speedup (%)", | |
color_discrete_sequence=px.colors.qualitative.Light24, | |
custom_data=QUANT_DATA, | |
color="Quantization ποΈ Custom Kernel", | |
points="all", | |
) | |
# add hover data | |
prefill_fig.update_traces( | |
hovertemplate="<br>".join( | |
[ | |
f"<b>{column}:</b> %{{customdata[{i}]}}" | |
for i, column in enumerate(QUANT_DATA) | |
] | |
) | |
) | |
# add layout | |
prefill_fig.update_layout( | |
title={ | |
"text": "Prefill Speedup per Architecture", | |
"y": 0.95, | |
"x": 0.5, | |
"xanchor": "center", | |
"yanchor": "top", | |
}, | |
xaxis_title="LLM Architecture", | |
yaxis_title="Prefill Speedup (%)", | |
legend_title="Quantization Scheme", | |
width=1200, | |
height=600, | |
) | |
return prefill_fig | |
def create_quant_plots(llm_perf_df): | |
# descriptive text | |
gr.HTML("π Hover over the points π for additional information.", elem_id="text") | |
# get figures | |
prefill_fig = get_quant_prefill_fig(llm_perf_df) | |
decode_fig = get_quant_decode_fig(llm_perf_df) | |
# create plots | |
prefill_plot = gr.components.Plot( | |
value=prefill_fig, elem_id="plot", show_label=False | |
) | |
decode_plot = gr.components.Plot(value=decode_fig, elem_id="plot", show_label=False) | |
return prefill_plot, decode_plot | |