Spaces:
Running
Running
import os | |
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.assets.css_html_js import custom_css, custom_js | |
from src.assets.text_content import ( | |
TITLE, | |
INTRODUCTION_TEXT, | |
ABOUT_TEXT, | |
EXAMPLE_CONFIG_TEXT, | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
) | |
from src.utils import ( | |
change_tab, | |
restart_space, | |
load_dataset_repo, | |
process_model_name, | |
process_model_type, | |
) | |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" | |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" | |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) | |
ALL_COLUMNS_MAPPING = { | |
"backend.name": "Backend π", | |
"backend.torch_dtype": "Dtype π₯", | |
"optimizations": "Optimizations π οΈ", | |
"quantization": "Quantization ποΈ", | |
# | |
"weight_class": "Class ποΈ", | |
"model_type": "Type π€", | |
# | |
"generate.peak_memory(MB)": "Memory (MB) β¬οΈ", | |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ", | |
"generate.energy_consumption(kWh/token)": "Energy (kWh/token) β¬οΈ", | |
"best_score": "Best Score (%) β¬οΈ", | |
# | |
"best_scored_model": "Best Scored LLM π", | |
} | |
ALL_COLUMNS_DATATYPES = [ | |
"str", | |
"str", | |
"str", | |
"str", | |
# | |
"str", | |
"str", | |
# | |
"number", | |
"number", | |
"number", | |
"str", | |
# | |
"markdown", | |
] | |
SORTING_COLUMN = ["best_score"] | |
SORTING_ASCENDING = [False] | |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) | |
def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"): | |
if llm_perf_dataset_repo: | |
llm_perf_dataset_repo.git_pull() | |
# load data | |
benchmark_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv") | |
clusters_df = pd.read_csv("./llm-perf-dataset/Clustered-Open-LLM-Leaderboard.csv") | |
# merge on model | |
merged_df = benchmark_df.merge( | |
clusters_df, left_on="model", right_on="best_scored_model" | |
) | |
# fix energy consumption nans | |
merged_df["generate.energy_consumption(kWh/token)"].fillna("N/A", inplace=True) | |
# add optimizations | |
merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply( | |
lambda x: "BetterTransformer" if x else "None" | |
) | |
# add quantization scheme | |
merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply( | |
lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None") | |
) | |
# # distance to 100% score | |
# score_distance = 100 - merged_df["best_score"] | |
# # distance to 0s latency | |
# latency_distance = merged_df["generate.latency(s)"] | |
# # distance to 0MB memory | |
# memory_distance = merged_df["forward.peak_memory(MB)"] | |
# # add perf distance | |
# merged_df["perf_distance"] = ( | |
# score_distance**2 + latency_distance**2 + memory_distance**2 | |
# ) ** 0.5 | |
# sort | |
merged_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True) | |
return merged_df | |
def get_benchmark_table(bench_df): | |
# add * to quantized models score | |
copy_df = bench_df.copy() | |
# add * to quantized models score since we can't garantee the score is the same | |
copy_df["best_score"] = copy_df.apply( | |
lambda x: f"{x['best_score']}**" | |
if x["backend.quantization_strategy"] in ["bnb", "gptq"] | |
else x["best_score"], | |
axis=1, | |
) | |
# filter | |
copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())] | |
# rename | |
copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True) | |
# transform | |
copy_df["Type π€"] = copy_df["Type π€"].apply(process_model_type) | |
copy_df["Best Scored LLM π"] = copy_df["Best Scored LLM π"].apply( | |
process_model_name | |
) | |
# drop duplicates | |
copy_df.drop_duplicates(inplace=True) | |
return copy_df | |
def get_benchmark_plot(bench_df): | |
# filter latency bigger than 150s | |
bench_df = bench_df[bench_df["generate.latency(s)"] <= 150] | |
fig = px.scatter( | |
bench_df, | |
y="best_score", | |
x="generate.latency(s)", | |
size="generate.peak_memory(MB)", | |
color="model_type", | |
custom_data=list(ALL_COLUMNS_MAPPING.keys()), | |
color_discrete_sequence=px.colors.qualitative.Light24, | |
) | |
fig.update_layout( | |
title={ | |
"text": "Latency vs. Score vs. Memory", | |
"y": 0.95, | |
"x": 0.5, | |
"xanchor": "center", | |
"yanchor": "top", | |
}, | |
xaxis_title="Generation Throughput (tokens/s)", | |
yaxis_title="Open LLM Score (%)", | |
legend_title="LLM Type", | |
width=1200, | |
height=600, | |
) | |
fig.update_traces( | |
hovertemplate="<br>".join( | |
[ | |
f"<b>{ALL_COLUMNS_MAPPING[key]}:</b> %{{customdata[{i}]}}" | |
for i, key in enumerate(ALL_COLUMNS_MAPPING.keys()) | |
] | |
) | |
) | |
return fig | |
def filter_query( | |
text, | |
backends, | |
datatypes, | |
optimizations, | |
score, | |
memory, | |
benchmark="Succeeded-1xA100-80GB", | |
): | |
raw_df = get_benchmark_df(benchmark=benchmark) | |
filtered_df = raw_df[ | |
raw_df["best_scored_model"].str.lower().str.contains(text.lower()) | |
& raw_df["backend.name"].isin(backends) | |
& raw_df["backend.torch_dtype"].isin(datatypes) | |
& ( | |
pd.concat( | |
[ | |
raw_df["optimizations"].str.contains(optimization) | |
for optimization in optimizations | |
], | |
axis=1, | |
).any(axis="columns") | |
if len(optimizations) > 0 | |
else True | |
) | |
& (raw_df["best_score"] >= score) | |
& (raw_df["forward.peak_memory(MB)"] <= memory) | |
] | |
filtered_table = get_benchmark_table(filtered_df) | |
filtered_plot = get_benchmark_plot(filtered_df) | |
return filtered_table, filtered_plot | |
# Dataframes | |
A100_df = get_benchmark_df(benchmark="Succeeded-1xA100-80GB") | |
A100_table = get_benchmark_table(A100_df) | |
A100_plot = get_benchmark_plot(A100_df) | |
# Demo interface | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
# leaderboard title | |
gr.HTML(TITLE) | |
# introduction text | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text") | |
# leaderboard tabs | |
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: | |
with gr.TabItem("π₯οΈ A100-80GB Benchmark π", id=0): | |
gr.HTML( | |
"π Scroll to the right π for more columns.", elem_id="descriptive-text" | |
) | |
# Original leaderboard table | |
A100_leaderboard = gr.components.Dataframe( | |
value=A100_table, | |
datatype=ALL_COLUMNS_DATATYPES, | |
headers=list(ALL_COLUMNS_MAPPING.values()), | |
elem_id="1xA100-table", | |
) | |
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1): | |
gr.HTML( | |
"π Hover over the points π for additional information.", | |
elem_id="descriptive-text", | |
) | |
# Original leaderboard plot | |
A100_plotly = gr.components.Plot( | |
value=A100_plot, | |
elem_id="1xA100-plot", | |
show_label=False, | |
) | |
with gr.TabItem("Control Panel ποΈ", id=2): | |
gr.HTML( | |
"Use this control panel to filter the leaderboard's table and plot.", | |
elem_id="descriptive-text", | |
) | |
# control panel interface | |
with gr.Row(): | |
with gr.Column(scale=1): | |
search_bar = gr.Textbox( | |
label="Model π€", | |
info="π Search for a model name", | |
elem_id="search-bar", | |
) | |
with gr.Column(scale=1): | |
with gr.Box(): | |
score_slider = gr.Slider( | |
label="Open LLM Score π", | |
info="ποΈ Slide to minimum Open LLM score", | |
value=0, | |
elem_id="threshold-slider", | |
) | |
with gr.Column(scale=1): | |
with gr.Box(): | |
memory_slider = gr.Slider( | |
label="Peak Memory (MB) π", | |
info="ποΈ Slide to maximum Peak Memory", | |
minimum=0, | |
maximum=80 * 1024, | |
value=80 * 1024, | |
elem_id="memory-slider", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
backend_checkboxes = gr.CheckboxGroup( | |
label="Backends π", | |
choices=["pytorch", "onnxruntime"], | |
value=["pytorch", "onnxruntime"], | |
info="βοΈ Select the backends", | |
elem_id="backend-checkboxes", | |
) | |
with gr.Column(scale=1): | |
datatype_checkboxes = gr.CheckboxGroup( | |
label="Dtypes π₯", | |
choices=["float32", "float16"], | |
value=["float32", "float16"], | |
info="βοΈ Select the load dtypes", | |
elem_id="dtype-checkboxes", | |
) | |
with gr.Column(scale=2): | |
optimizations_checkboxes = gr.CheckboxGroup( | |
label="Optimizations π οΈ", | |
choices=["None", "BetterTransformer"], | |
value=["None", "BetterTransformer"], | |
info="βοΈ Select the optimizations", | |
elem_id="optimizations-checkboxes", | |
) | |
with gr.Row(): | |
filter_button = gr.Button( | |
value="Filter π", | |
elem_id="filter-button", | |
) | |
with gr.TabItem("About π", id=3): | |
gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text") | |
gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text") | |
demo.load( | |
change_tab, | |
A100_tabs, | |
_js=custom_js, | |
) | |
filter_button.click( | |
filter_query, | |
[ | |
search_bar, | |
backend_checkboxes, | |
datatype_checkboxes, | |
optimizations_checkboxes, | |
score_slider, | |
memory_slider, | |
], | |
[A100_leaderboard, A100_plotly], | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
).style(show_copy_button=True) | |
# Restart space every hour | |
scheduler = BackgroundScheduler() | |
scheduler.add_job( | |
restart_space, | |
"interval", | |
seconds=3600, | |
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN], | |
) | |
scheduler.start() | |
# Launch demo | |
demo.queue(concurrency_count=40).launch() | |