File size: 4,237 Bytes
ab5f5f1
 
 
 
76b423c
ab5f5f1
 
76b423c
 
ab5f5f1
76b423c
 
 
 
 
a1f6c2e
76b423c
 
a1f6c2e
76b423c
 
 
 
 
 
 
ab5f5f1
76b423c
 
ab5f5f1
 
 
76b423c
 
 
 
 
 
7ecfa5a
76b423c
 
 
 
ab5f5f1
7ecfa5a
 
 
76b423c
ab5f5f1
76b423c
7ecfa5a
ab5f5f1
 
76b423c
ab5f5f1
 
76b423c
ab5f5f1
76b423c
 
 
 
 
5345cba
76b423c
 
ab5f5f1
76b423c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0232cf1
ab5f5f1
 
 
 
 
 
 
 
 
 
 
 
76b423c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os

import pandas as pd

from .utils import process_kernels, process_quantizations

COLUMNS_MAPPING = {
    "config.name": "Experiment πŸ§ͺ",
    "config.backend.model": "Model πŸ€—",
    # primary measurements
    "report.prefill.latency.p50": "Prefill (s)",
    "report.per_token.latency.p50": "Per Token (s)",
    "report.decode.throughput.value": "Decode (tokens/s)",
    "report.decode.efficiency.value": "Energy (tokens/kWh)",
    "report.decode.memory.max_allocated": "Memory (MB)",
    # deployment settings
    "config.backend.name": "Backend 🏭",
    "config.backend.torch_dtype": "Precision πŸ“₯",
    "quantization": "Quantization πŸ—œοΈ",
    "attention": "Attention πŸ‘οΈ",
    "kernel": "Kernel βš›οΈ",
    # additional information
    "architecture": "Architecture πŸ›οΈ",
    "prefill+decode": "End-to-End (s)",
    "Average ⬆️": "Open LLM Score (%)",
    "#Params (B)": "Params (B)",
}
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
SUBSETS = ["unquantized", "awq", "bnb", "gptq"]
SORTING_ASCENDING = [False, True, False]


def get_raw_llm_perf_df(machine: str = "1xA10"):
    dfs = []
    for subset in SUBSETS:
        try:
            dfs.append(
                pd.read_csv(
                    f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/perf-df-{subset}-{machine}.csv"
                )
            )
        except Exception:
            print(f"Subset {subset} for machine {machine} not found")

    perf_df = pd.concat(dfs)
    llm_df = pd.read_csv(
        "hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv"
    )

    llm_perf_df = pd.merge(
        llm_df, perf_df, left_on="Model", right_on="config.backend.model"
    )

    return llm_perf_df


def processed_llm_perf_df(llm_perf_df):
    # some assertions
    assert llm_perf_df["config.scenario.input_shapes.batch_size"].nunique() == 1
    assert llm_perf_df["config.scenario.input_shapes.sequence_length"].nunique() == 1
    assert llm_perf_df["config.scenario.generate_kwargs.max_new_tokens"].nunique() == 1
    assert llm_perf_df["config.scenario.generate_kwargs.min_new_tokens"].nunique() == 1
    # fix couple stuff
    llm_perf_df.dropna(subset=["report.decode.latency.p50"], inplace=True)
    llm_perf_df["config.name"] = llm_perf_df["config.name"].str.replace(
        "flash_attention_2", "fa2"
    )
    llm_perf_df["prefill+decode"] = (
        llm_perf_df["report.prefill.latency.p50"]
        + (llm_perf_df["report.decode.latency.p50"])
    )
    # llm_perf_df["architecture"] = llm_perf_df["config.backend.model"].apply(
    #     process_architectures
    # )
    llm_perf_df["architecture"] = llm_perf_df["Architecture"]
    llm_perf_df["attention"] = (
        llm_perf_df["config.backend.attn_implementation"]
        .str.replace("flash_attention_2", "FAv2")
        .str.replace("eager", "Eager")
        .str.replace("sdpa", "SDPA")
    )
    llm_perf_df["quantization"] = llm_perf_df.apply(process_quantizations, axis=1)
    llm_perf_df["kernel"] = llm_perf_df.apply(process_kernels, axis=1)
    # round numerical columns
    llm_perf_df = llm_perf_df.round(
        {
            "report.prefill.latency.p50": 3,
            "report.decode.latency.p50": 3,
            "report.decode.throughput.value": 3,
            "report.decode.efficiency.value": 3,
            "report.decode.memory.max_allocated": 3,
            "Average ⬆️": 3,
            "prefill+decode": 3,
            "#Params (B)": 3,
        }
    )
    # filter columns
    llm_perf_df = llm_perf_df[list(COLUMNS_MAPPING.keys())]
    # rename columns
    llm_perf_df.rename(columns=COLUMNS_MAPPING, inplace=True)
    # sort by metric
    llm_perf_df.sort_values(
        by=SORTING_COLUMNS,
        ascending=SORTING_ASCENDING,
        inplace=True,
    )

    return llm_perf_df


def get_llm_perf_df(machine: str = "1xA10"):
    if os.path.exists(f"llm-perf-leaderboard-{machine}.csv"):
        llm_perf_df = pd.read_csv(f"llm-perf-leaderboard-{machine}.csv")
    else:
        llm_perf_df = get_raw_llm_perf_df(machine)
        llm_perf_df = processed_llm_perf_df(llm_perf_df)
        llm_perf_df.to_csv(f"llm-perf-leaderboard-{machine}.csv", index=False)

    return llm_perf_df