File size: 1,884 Bytes
8dc4b22
c8763bd
 
9dc4521
570bffa
 
 
bee5389
570bffa
c8763bd
9dc4521
e747f4e
 
 
 
 
 
 
 
bee5389
b869fcb
9dc4521
 
 
 
bee5389
9dc4521
 
00642fb
bee5389
9dc4521
bee5389
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
TITLE = """<h1 align="center" id="space-title">πŸ€— Open LLM-Perf Leaderboard πŸ‹οΈ</h1>"""

INTRODUCTION_TEXT = f"""
The πŸ€— Open LLM-Perf Leaderboard πŸ‹οΈ aims to benchmark the performance (latency & throughput) of Large Language Models (LLMs) on different hardwares and backends using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark) and [Optimum](https://github.com/huggingface/optimum) flavors.
Anyone from the community can request a model or a hardware+backend configuration for automated benchmarking:
- Model requests should be made in the [πŸ€— Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and will be added to the πŸ€— Open LLM-Perf Leaderboard πŸ‹οΈ once they're publicly available.
- Hardware+Backend requests should be made in the πŸ€— Open LLM-Perf Leaderboard πŸ‹οΈ [community discussions](https://huggingface.co/spaces/optimum/llm-perf-leaderboard/discussions).

[Config files](https://github.com/huggingface/optimum-benchmark/blob/main/examples/bert.yaml) (which can be used with Optimum-Benchmark) will be available soon for reproduction, questioning and correction of our results.
"""

SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3>
<ul>
    <li>Singleton Batch (1)</li>
    <li>Thousand Tokens (1000)</li>
</ul>
"""


CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results."
CITATION_BUTTON_TEXT = r"""@misc{open-llm-perf-leaderboard,
  author = {Ilyas Moutawwakil},
  title = {Open LLM-Perf Leaderboard},
  year = {2023},
  publisher = {Hugging Face},
  howpublished = "\url{https://huggingface.co/spaces/optimum/llm-perf-leaderboard}",
@software{optimum-benchmark,
  author       = {Ilyas Moutawwakil},
  publisher = {Hugging Face},
  title        = {A framework for benchmarking the performance of Transformers models on different hardwares and backends},
}
"""