Spaces:
Running
Running
File size: 9,695 Bytes
c8763bd 4cfc121 c8763bd 0f1bf97 e747f4e c8763bd d262fb3 708b21b c8763bd dcfabfb b3a1bf0 bf397e6 0f1bf97 dcfabfb 97058d0 35afb9b 0f1bf97 bf397e6 dcfabfb 0f1bf97 6640b32 efc3d5b d262fb3 c8763bd b3a1bf0 e2c5bda efc3d5b 0f1bf97 e747f4e 930b7c1 bf397e6 89517bf bf397e6 02b17f3 ec6f618 bf397e6 b3a1bf0 efc3d5b 930b7c1 efc3d5b 930b7c1 efc3d5b 930b7c1 b3a1bf0 0f1bf97 b3a1bf0 0f1bf97 930b7c1 c8763bd b3a1bf0 d8fa097 8e785e9 8e8c463 0f1bf97 bf397e6 0f1bf97 b3a1bf0 8e8c463 5236273 8e8c463 0f1bf97 8e8c463 b3a1bf0 8985298 d3abea5 5643bcb 4cfc121 5643bcb 0f1bf97 bf397e6 0f1bf97 8e8c463 97058d0 c4dcfe7 97058d0 b3a1bf0 0f1bf97 e2d1670 c4dcfe7 b3a1bf0 8e8c463 c8763bd 8e8c463 c8763bd 8e8c463 c8763bd 8e8c463 8e785e9 44c696c 97058d0 541732b 28d58c8 541732b 28d58c8 97058d0 b075f8f 97058d0 b486bbc 97058d0 b075f8f 8e785e9 67cbded c8763bd 8e8c463 708b21b a18f8de 8e785e9 b3a1bf0 a18f8de 708b21b a18f8de 1be6060 4cfc121 01d6a6d 1be6060 4cfc121 97058d0 b3a1bf0 97058d0 c4dcfe7 97058d0 bc92145 b3a1bf0 9dc4521 00642fb d262fb3 8e8c463 d262fb3 c8763bd 0f1bf97 c8763bd d262fb3 c8763bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import os
import gradio as gr
import pandas as pd
import plotly.express as px
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.text_content import (
TITLE,
INTRODUCTION_TEXT,
SINGLE_A100_TEXT,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
)
from src.utils import (
restart_space,
load_dataset_repo,
make_clickable_model,
make_clickable_score,
num_to_str,
)
from src.assets.css_html_js import custom_css
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
COLUMNS_MAPPING = {
"model": "Model π€",
"backend.name": "Backend π",
"backend.torch_dtype": "Load Dtype π₯",
"optimizations": "Optimizations π οΈ",
#
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
"average": "Average Open LLM Score β¬οΈ",
#
"num_parameters": "#οΈβ£ Parameters π",
}
COLUMNS_DATATYPES = [
"markdown",
"str",
"str",
"str",
#
"number",
"number",
"markdown",
#
"str",
]
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark="1xA100-80GB"):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load
bench_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
scores_df = pd.read_csv(f"./llm-perf-dataset/reports/additional_data.csv")
bench_df = bench_df.merge(scores_df, on="model", how="left")
bench_df["optimizations"] = bench_df[
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"]
].apply(
lambda x: "BetterTransformer"
if x[0] == True
else ("LLM.int8" if x[1] == True else ("NF4" if x[2] == True else "None")),
axis=1,
)
return bench_df
def get_benchmark_table(bench_df):
# filter
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
# rename
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
# sort
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
# transform
bench_df["Model π€"] = bench_df["Model π€"].apply(make_clickable_model)
bench_df["#οΈβ£ Parameters π"] = bench_df["#οΈβ£ Parameters π"].apply(num_to_str)
bench_df["Average Open LLM Score β¬οΈ"] = bench_df["Average Open LLM Score β¬οΈ"].apply(
make_clickable_score
)
return bench_df
def get_benchmark_plot(bench_df):
# untill falcon gets fixed / natively supported
bench_df = bench_df[bench_df["generate.latency(s)"] < 100]
fig = px.scatter(
bench_df,
x="generate.latency(s)",
y="average",
color="model_type",
symbol="backend.name",
size="forward.peak_memory(MB)",
custom_data=[
"model",
"backend.name",
"backend.torch_dtype",
"optimizations",
"forward.peak_memory(MB)",
"generate.throughput(tokens/s)",
],
symbol_sequence=["triangle-up", "circle"],
# as many distinct colors as there are model_type,backend.name couples
color_discrete_sequence=px.colors.qualitative.Light24,
)
fig.update_layout(
title={
"text": "Model Score vs. Latency vs. Memory",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Per 1000 Tokens Latency (s)",
yaxis_title="Average Open LLM Score",
legend_title="Model Type and Backend",
width=1200,
height=600,
)
fig.update_traces(
hovertemplate="<br>".join(
[
"Model: %{customdata[0]}",
"Backend: %{customdata[1]}",
"Datatype: %{customdata[2]}",
"Optimizations: %{customdata[3]}",
"Peak Memory (MB): %{customdata[4]}",
"Throughput (tokens/s): %{customdata[5]}",
"Average Open LLM Score: %{y}",
"Per 1000 Tokens Latency (s): %{x}",
]
)
)
return fig
def filter_query(
text,
backends,
datatypes,
optimizations,
score,
memory,
benchmark="1xA100-80GB",
):
raw_df = get_benchmark_df(benchmark=benchmark)
filtered_df = raw_df[
raw_df["model"].str.lower().str.contains(text.lower())
& raw_df["backend.name"].isin(backends)
& raw_df["backend.torch_dtype"].isin(datatypes)
& (
pd.concat(
[
raw_df["optimizations"].str.contains(optimization)
for optimization in optimizations
],
axis=1,
).any(axis="columns")
if len(optimizations) > 0
else True
)
& (raw_df["average"] >= score)
& (raw_df["forward.peak_memory(MB)"] <= memory)
]
filtered_table = get_benchmark_table(filtered_df)
filtered_plot = get_benchmark_plot(filtered_df)
return filtered_table, filtered_plot
# Dataframes
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
single_A100_table = get_benchmark_table(single_A100_df)
single_A100_plot = get_benchmark_plot(single_A100_df)
# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
# leaderboard title
gr.HTML(TITLE)
# introduction text
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# control panel title
gr.HTML("<h2>Control Panel ποΈ</h2>")
# control panel interface
with gr.Row():
with gr.Column(scale=2):
search_bar = gr.Textbox(
label="Model π€",
info="π Search for a model name",
elem_id="search-bar",
)
with gr.Column(scale=1):
with gr.Box():
score_slider = gr.Slider(
label="Average Open LLM Score π",
info="ποΈ Slide to minimum Average Open LLM score",
value=0,
elem_id="threshold-slider",
)
with gr.Column(scale=1):
with gr.Box():
memory_slider = gr.Slider(
label="Peak Memory (MB) π",
info="ποΈ Slide to maximum Peak Memory",
minimum=0,
maximum=80 * 1024,
value=80 * 1024,
elem_id="memory-slider",
)
with gr.Row():
with gr.Column(scale=1):
backend_checkboxes = gr.CheckboxGroup(
label="Backends π",
choices=["pytorch", "onnxruntime"],
value=["pytorch", "onnxruntime"],
info="βοΈ Select the backends",
elem_id="backend-checkboxes",
)
with gr.Column(scale=1):
datatype_checkboxes = gr.CheckboxGroup(
label="Datatypes π₯",
choices=["float32", "float16"],
value=["float32", "float16"],
info="βοΈ Select the load datatypes",
elem_id="datatype-checkboxes",
)
with gr.Column(scale=2):
optimizations_checkboxes = gr.CheckboxGroup(
label="Optimizations π οΈ",
choices=["None", "BetterTransformer", "LLM.int8", "NF4"],
value=["None", "BetterTransformer", "LLM.int8", "NF4"],
info="βοΈ Select the optimizations",
elem_id="optimizations-checkboxes",
)
with gr.Row():
filter_button = gr.Button(
value="Filter π",
elem_id="filter-button",
)
# leaderboard tabs
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π₯οΈ A100-80GB Leaderboard π", id=0):
gr.HTML(SINGLE_A100_TEXT)
# Original leaderboard table
single_A100_leaderboard = gr.components.Dataframe(
value=single_A100_table,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
elem_id="1xA100-table",
)
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1):
# Original leaderboard plot
gr.HTML(SINGLE_A100_TEXT)
# Original leaderboard plot
single_A100_plotly = gr.components.Plot(
value=single_A100_plot,
elem_id="1xA100-plot",
show_label=False,
)
filter_button.click(
filter_query,
[
search_bar,
backend_checkboxes,
datatype_checkboxes,
optimizations_checkboxes,
score_slider,
memory_slider,
],
[single_A100_leaderboard, single_A100_plotly],
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space,
"interval",
seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN],
)
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()
|