Spaces:
Sleeping
Sleeping
File size: 5,973 Bytes
d1e3b68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import random
import subprocess
import gradio as gr
from ansi2html import Ansi2HTMLConverter
from optimum_benchmark.task_utils import (
TASKS_TO_AUTOMODELS,
infer_task_from_model_name_or_path,
)
def get_backend_config():
return [
# seed
gr.Textbox(label="backend.seed", value=42),
# inter_op_num_threads
gr.Textbox(
label="backend.inter_op_num_threads",
value=None,
placeholder=None,
),
# intra_op_num_threads
gr.Textbox(
label="backend.intra_op_num_threads",
value=None,
placeholder=None,
),
# initial_isolation_check
gr.Checkbox(label="backend.initial_isolation_check", value=True),
# continous_isolation_check
gr.Checkbox(label="backend.continous_isolation_check", value=True),
# delete_cache
gr.Checkbox(label="backend.delete_cache", value=False),
]
def get_inference_config():
return [
# duration
gr.Textbox(label="benchmark.duration", value=10),
# warmup runs
gr.Textbox(label="benchmark.warmup_runs", value=1),
]
def get_pytorch_config():
return [
# no_weights
gr.Checkbox(label="backend.no_weights"),
# device_map
gr.Dropdown(["auto", "sequential"], label="backend.device_map"),
# torch_dtype
gr.Dropdown(
["bfloat16", "float16", "float32", "auto"],
label="backend.torch_dtype",
),
# disable_grad
gr.Checkbox(label="backend.disable_grad"),
# eval_mode
gr.Checkbox(label="backend.eval_mode"),
# amp_autocast
gr.Checkbox(label="backend.amp_autocast"),
# amp_dtype
gr.Dropdown(["bfloat16", "float16"], label="backend.amp_dtype"),
# torch_compile
gr.Checkbox(label="backend.torch_compile"),
# bettertransformer
gr.Checkbox(label="backend.bettertransformer"),
# quantization_scheme
gr.Dropdown(["gptq", "bnb"], label="backend.quantization_scheme"),
# use_ddp
gr.Checkbox(label="backend.use_ddp"),
# peft_strategy
gr.Textbox(label="backend.peft_strategy"),
]
conv = Ansi2HTMLConverter()
def run_experiment(kwargs):
arguments = [
"optimum-benchmark",
"--config-dir",
"./",
"--config-name",
"base_config",
]
for key, value in kwargs.items():
arguments.append(f"{key.label}={value if value != '' else 'null'}")
# stream subprocess output
process = subprocess.Popen(
arguments,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
)
ansi_text = ""
for ansi_line in iter(process.stdout.readline, ""):
# stream process output
print(ansi_line, end="")
# append line to ansi text
ansi_text += ansi_line
# convert ansi to html
html_text = conv.convert(ansi_text)
# extract style from html
style = html_text.split('<style type="text/css">')[1].split("</style>")[0]
# parse style into dict
style_dict = {}
for line in style.split("\n"):
if line:
key, value = line.split("{")
key = key.replace(".", "").strip()
value = value.split("}")[0].strip()
style_dict[key] = value
# replace style in html
for key, value in style_dict.items():
html_text = html_text.replace(f'class="{key}"', f'style="{value}"')
yield html_text
return html_text
with gr.Blocks() as demo:
# title text
gr.HTML("<h1 style='text-align: center'>🤗 Optimum Benchmark 🏋️</h1>")
# explanation text
gr.Markdown(
"This is a demo space of [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark.git)."
)
model = gr.Textbox(
label="model",
value="bert-base-uncased",
)
task = gr.Dropdown(
label="task",
value="text-classification",
choices=list(TASKS_TO_AUTOMODELS.keys()),
)
device = gr.Dropdown(
value="cpu",
choices=["cpu", "cuda"],
label="device",
)
expetiment_name = gr.Textbox(
label="experiment_name",
value=f"experiment_{random.getrandbits(16)}",
)
model.submit(fn=infer_task_from_model_name_or_path, inputs=[model], outputs=[task])
with gr.Row():
with gr.Column(variant="panel"):
backend = gr.Dropdown(
["pytorch", "onnxruntime", "openvino", "neural-compressor"],
label="backend",
value="pytorch",
container=True,
)
with gr.Column(variant="panel"):
with gr.Accordion(label="Backend Config", open=False):
backend_config = get_backend_config() + get_pytorch_config()
with gr.Row():
with gr.Column(variant="panel"):
benchmark = gr.Dropdown(
choices=["inference", "training"],
label="benchmark",
value="inference",
container=True,
)
with gr.Column(variant="panel"):
with gr.Accordion(label="Benchmark Config", open=False):
benchmark_config = get_inference_config()
# run benchmark button
run_benchmark = gr.Button(value="Run Benchmark", variant="primary")
# accordion with output logs
with gr.Accordion(label="Logs:", open=True):
logs = gr.HTML()
run_benchmark.click(
fn=run_experiment,
inputs={
expetiment_name,
model,
task,
device,
backend,
benchmark,
*backend_config,
*benchmark_config,
},
outputs=[logs],
queue=True,
)
if __name__ == "__main__":
demo.queue().launch()
|