Spaces:
Sleeping
Sleeping
import os | |
import time | |
import traceback | |
from typing import Optional | |
from config_store import ( | |
get_process_config, | |
get_inference_config, | |
get_openvino_config, | |
get_pytorch_config, | |
) | |
import gradio as gr | |
from huggingface_hub import whoami | |
from huggingface_hub.errors import GatedRepoError | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from optimum_benchmark.launchers.device_isolation_utils import * # noqa | |
from optimum_benchmark.backends.openvino.utils import ( | |
TASKS_TO_OVMODELS, | |
TASKS_TO_OVPIPELINES, | |
) | |
from optimum_benchmark.backends.transformers_utils import ( | |
TASKS_TO_AUTO_MODEL_CLASS_NAMES, | |
) | |
from optimum_benchmark.backends.diffusers_utils import ( | |
TASKS_TO_AUTO_PIPELINE_CLASS_NAMES, | |
) | |
from optimum_benchmark import ( | |
Benchmark, | |
BenchmarkConfig, | |
InferenceConfig, | |
ProcessConfig, | |
PyTorchConfig, | |
OVConfig, | |
) | |
from optimum_benchmark.logging_utils import setup_logging | |
from optimum_benchmark.task_utils import infer_task_from_model_name_or_path | |
DEVICE = "cpu" | |
LAUNCHER = "process" | |
SCENARIO = "inference" | |
BACKENDS = ["pytorch", "openvino"] | |
BENCHMARKS_HF_TOKEN = os.getenv("BENCHMARKS_HF_TOKEN") | |
BENCHMARKS_REPO_ID = "optimum-benchmark/OpenVINO-Benchmarks" | |
TASKS = set(TASKS_TO_OVMODELS.keys() | TASKS_TO_OVPIPELINES) & set( | |
TASKS_TO_AUTO_MODEL_CLASS_NAMES.keys() | TASKS_TO_AUTO_PIPELINE_CLASS_NAMES.keys() | |
) | |
def parse_configs(inputs): | |
configs = {"process": {}, "inference": {}, "pytorch": {}, "openvino": {}} | |
for key, value in inputs.items(): | |
if key.label == "model": | |
model = value | |
elif key.label == "task": | |
task = value | |
elif key.label == "openvino_model": | |
openvino_label = value | |
elif "." in key.label: | |
backend, argument = key.label.split(".") | |
configs[backend][argument] = value | |
else: | |
continue | |
for key in configs.keys(): | |
for k, v in configs[key].items(): | |
if k in ["input_shapes", "generate_kwargs", "call_kwargs", "numactl_kwargs"]: | |
configs[key][k] = eval(v) | |
configs["process"] = ProcessConfig(**configs.pop("process")) | |
configs["inference"] = InferenceConfig(**configs.pop("inference")) | |
configs["pytorch"] = PyTorchConfig( | |
task=task, | |
model=model, | |
device=DEVICE, | |
**{k: v for k, v in configs["pytorch"].items() if v}, | |
) | |
configs["openvino"] = OVConfig( | |
task=task, | |
model=openvino_label or model, | |
device=DEVICE, | |
**{k: v for k, v in configs["openvino"].items() if v}, | |
) | |
return configs | |
def run_benchmark(inputs, oauth_token: Optional[gr.OAuthToken]): | |
if oauth_token is None: | |
raise gr.Error("Please login to be able to run the benchmark.") | |
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S") | |
use_name = whoami(oauth_token.token)["name"] | |
folder = f"{use_name}/{timestamp}" | |
gr.Info(f"π© Benchmark will be saved under {BENCHMARKS_REPO_ID}/{folder}") | |
outputs = {backend: "Running..." for backend in BACKENDS} | |
configs = parse_configs(inputs) | |
yield tuple(outputs[b] for b in BACKENDS) | |
for backend in BACKENDS: | |
try: | |
benchmark_name = f"{folder}/{backend}" | |
benchmark_config = BenchmarkConfig( | |
name=benchmark_name, | |
backend=configs[backend], | |
launcher=configs[LAUNCHER], | |
scenario=configs[SCENARIO], | |
) | |
benchmark_report = Benchmark.launch(benchmark_config) | |
benchmark_config.push_to_hub( | |
repo_id=BENCHMARKS_REPO_ID, | |
subfolder=benchmark_name, | |
token=BENCHMARKS_HF_TOKEN, | |
) | |
benchmark_report.push_to_hub( | |
repo_id=BENCHMARKS_REPO_ID, | |
subfolder=benchmark_name, | |
token=BENCHMARKS_HF_TOKEN, | |
) | |
except GatedRepoError: | |
outputs[backend] = f"π Model {configs[backend].model} is gated." | |
yield tuple(outputs[b] for b in BACKENDS) | |
gr.Info("π Gated Repo Error while trying to access the model.") | |
except Exception: | |
outputs[backend] = f"\n```python-traceback\n{traceback.format_exc()}```\n" | |
yield tuple(outputs[b] for b in BACKENDS) | |
gr.Info(f"β Error while running benchmark for {backend} backend.") | |
else: | |
outputs[backend] = f"\n{benchmark_report.to_markdown_text()}\n" | |
yield tuple(outputs[b] for b in BACKENDS) | |
gr.Info(f"β Benchmark for {backend} backend ran successfully.") | |
def update_task(model_id): | |
try: | |
inferred_task = infer_task_from_model_name_or_path(model_id) | |
except GatedRepoError: | |
raise gr.Error( | |
f"Model {model_id} is gated, please use optimum-benchmark locally to benchmark it." | |
) | |
except Exception: | |
raise gr.Error( | |
f"Error while inferring task for {model_id}, please select a task manually." | |
) | |
if inferred_task not in TASKS: | |
raise gr.Error( | |
f"Task {inferred_task} is not supported by OpenVINO, please select a task manually." | |
) | |
return inferred_task | |
with gr.Blocks() as demo: | |
# add login button | |
gr.LoginButton() | |
# add image | |
gr.HTML( | |
"""<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">""" | |
"<h1 style='text-align: center'>π€ Optimum-Benchmark Interface ποΈ</h1>" | |
"<p style='text-align: center'>" | |
"This Space uses <a href='https://github.com/huggingface/optimum-benchmark.git'>Optimum-Benchmark</a> to automatically benchmark a model from the Hub on different backends." | |
"<br>The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub." | |
"</p>" | |
) | |
with gr.Column(variant="panel"): | |
model = HuggingfaceHubSearch( | |
placeholder="Search for a PyTorch model", | |
search_type="model", | |
label="model", | |
) | |
openvino_model = HuggingfaceHubSearch( | |
placeholder="Search for an OpenVINO model (optional)", | |
search_type="model", | |
label="openvino_model", | |
) | |
with gr.Row(): | |
task = gr.Dropdown( | |
info="Task to run the benchmark on.", | |
elem_id="task-dropdown", | |
choices=TASKS, | |
label="task", | |
) | |
with gr.Column(variant="panel"): | |
with gr.Accordion(label="Process Config", open=False, visible=True): | |
process_config = get_process_config() | |
with gr.Accordion(label="Inference Config", open=False, visible=True): | |
inference_config = get_inference_config() | |
with gr.Row() as backend_configs: | |
with gr.Accordion(label="PyTorch Config", open=False, visible=True): | |
pytorch_config = get_pytorch_config() | |
with gr.Accordion(label="OpenVINO Config", open=False, visible=True): | |
openvino_config = get_openvino_config() | |
with gr.Row(): | |
button = gr.Button(value="Run Benchmark", variant="primary") | |
with gr.Row(): | |
with gr.Accordion(label="PyTorch Report", open=True, visible=True): | |
pytorch_report = gr.Markdown() | |
with gr.Accordion(label="OpenVINO Report", open=True, visible=True): | |
openvino_report = gr.Markdown() | |
model.submit(inputs=model, outputs=task, fn=update_task) | |
button.click( | |
fn=run_benchmark, | |
inputs={ | |
task, | |
model, | |
openvino_model, | |
# backends, | |
*process_config.values(), | |
*inference_config.values(), | |
*pytorch_config.values(), | |
*openvino_config.values(), | |
}, | |
outputs={ | |
pytorch_report, | |
openvino_report, | |
}, | |
concurrency_limit=1, | |
) | |
if __name__ == "__main__": | |
os.environ["LOG_TO_FILE"] = "0" | |
os.environ["LOG_LEVEL"] = "INFO" | |
setup_logging(level="INFO", prefix="MAIN-PROCESS") | |
demo.queue(max_size=10).launch() | |