IlyasMoutawwakil's picture
fix call kwargs
0bb64a4
raw
history blame
8.23 kB
import os
import time
import traceback
from typing import Optional
from config_store import (
get_process_config,
get_inference_config,
get_openvino_config,
get_pytorch_config,
)
import gradio as gr
from huggingface_hub import whoami
from huggingface_hub.errors import GatedRepoError
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from optimum_benchmark.launchers.device_isolation_utils import * # noqa
from optimum_benchmark.backends.openvino.utils import (
TASKS_TO_OVMODELS,
TASKS_TO_OVPIPELINES,
)
from optimum_benchmark.backends.transformers_utils import (
TASKS_TO_AUTO_MODEL_CLASS_NAMES,
)
from optimum_benchmark.backends.diffusers_utils import (
TASKS_TO_AUTO_PIPELINE_CLASS_NAMES,
)
from optimum_benchmark import (
Benchmark,
BenchmarkConfig,
InferenceConfig,
ProcessConfig,
PyTorchConfig,
OVConfig,
)
from optimum_benchmark.logging_utils import setup_logging
from optimum_benchmark.task_utils import infer_task_from_model_name_or_path
DEVICE = "cpu"
LAUNCHER = "process"
SCENARIO = "inference"
BACKENDS = ["pytorch", "openvino"]
BENCHMARKS_HF_TOKEN = os.getenv("BENCHMARKS_HF_TOKEN")
BENCHMARKS_REPO_ID = "optimum-benchmark/OpenVINO-Benchmarks"
TASKS = set(TASKS_TO_OVMODELS.keys() | TASKS_TO_OVPIPELINES) & set(
TASKS_TO_AUTO_MODEL_CLASS_NAMES.keys() | TASKS_TO_AUTO_PIPELINE_CLASS_NAMES.keys()
)
def parse_configs(inputs):
configs = {"process": {}, "inference": {}, "pytorch": {}, "openvino": {}}
for key, value in inputs.items():
if key.label == "model":
model = value
elif key.label == "task":
task = value
elif key.label == "openvino_model":
openvino_label = value
elif "." in key.label:
backend, argument = key.label.split(".")
configs[backend][argument] = value
else:
continue
for key in configs.keys():
for k, v in configs[key].items():
if k in ["input_shapes", "generate_kwargs", "call_kwargs", "numactl_kwargs"]:
configs[key][k] = eval(v)
configs["process"] = ProcessConfig(**configs.pop("process"))
configs["inference"] = InferenceConfig(**configs.pop("inference"))
configs["pytorch"] = PyTorchConfig(
task=task,
model=model,
device=DEVICE,
**{k: v for k, v in configs["pytorch"].items() if v},
)
configs["openvino"] = OVConfig(
task=task,
model=openvino_label or model,
device=DEVICE,
**{k: v for k, v in configs["openvino"].items() if v},
)
return configs
def run_benchmark(inputs, oauth_token: Optional[gr.OAuthToken]):
if oauth_token is None:
raise gr.Error("Please login to be able to run the benchmark.")
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S")
use_name = whoami(oauth_token.token)["name"]
folder = f"{use_name}/{timestamp}"
gr.Info(f"πŸ“© Benchmark will be saved under {BENCHMARKS_REPO_ID}/{folder}")
outputs = {backend: "Running..." for backend in BACKENDS}
configs = parse_configs(inputs)
yield tuple(outputs[b] for b in BACKENDS)
for backend in BACKENDS:
try:
benchmark_name = f"{folder}/{backend}"
benchmark_config = BenchmarkConfig(
name=benchmark_name,
backend=configs[backend],
launcher=configs[LAUNCHER],
scenario=configs[SCENARIO],
)
benchmark_report = Benchmark.launch(benchmark_config)
benchmark_config.push_to_hub(
repo_id=BENCHMARKS_REPO_ID,
subfolder=benchmark_name,
token=BENCHMARKS_HF_TOKEN,
)
benchmark_report.push_to_hub(
repo_id=BENCHMARKS_REPO_ID,
subfolder=benchmark_name,
token=BENCHMARKS_HF_TOKEN,
)
except GatedRepoError:
outputs[backend] = f"πŸ”’ Model {configs[backend].model} is gated."
yield tuple(outputs[b] for b in BACKENDS)
gr.Info("πŸ”’ Gated Repo Error while trying to access the model.")
except Exception:
outputs[backend] = f"\n```python-traceback\n{traceback.format_exc()}```\n"
yield tuple(outputs[b] for b in BACKENDS)
gr.Info(f"❌ Error while running benchmark for {backend} backend.")
else:
outputs[backend] = f"\n{benchmark_report.to_markdown_text()}\n"
yield tuple(outputs[b] for b in BACKENDS)
gr.Info(f"βœ… Benchmark for {backend} backend ran successfully.")
def update_task(model_id):
try:
inferred_task = infer_task_from_model_name_or_path(model_id)
except GatedRepoError:
raise gr.Error(
f"Model {model_id} is gated, please use optimum-benchmark locally to benchmark it."
)
except Exception:
raise gr.Error(
f"Error while inferring task for {model_id}, please select a task manually."
)
if inferred_task not in TASKS:
raise gr.Error(
f"Task {inferred_task} is not supported by OpenVINO, please select a task manually."
)
return inferred_task
with gr.Blocks() as demo:
# add login button
gr.LoginButton()
# add image
gr.HTML(
"""<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">"""
"<h1 style='text-align: center'>πŸ€— Optimum-Benchmark Interface πŸ‹οΈ</h1>"
"<p style='text-align: center'>"
"This Space uses <a href='https://github.com/huggingface/optimum-benchmark.git'>Optimum-Benchmark</a> to automatically benchmark a model from the Hub on different backends."
"<br>The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub."
"</p>"
)
with gr.Column(variant="panel"):
model = HuggingfaceHubSearch(
placeholder="Search for a PyTorch model",
search_type="model",
label="model",
)
openvino_model = HuggingfaceHubSearch(
placeholder="Search for an OpenVINO model (optional)",
search_type="model",
label="openvino_model",
)
with gr.Row():
task = gr.Dropdown(
info="Task to run the benchmark on.",
elem_id="task-dropdown",
choices=TASKS,
label="task",
)
with gr.Column(variant="panel"):
with gr.Accordion(label="Process Config", open=False, visible=True):
process_config = get_process_config()
with gr.Accordion(label="Inference Config", open=False, visible=True):
inference_config = get_inference_config()
with gr.Row() as backend_configs:
with gr.Accordion(label="PyTorch Config", open=False, visible=True):
pytorch_config = get_pytorch_config()
with gr.Accordion(label="OpenVINO Config", open=False, visible=True):
openvino_config = get_openvino_config()
with gr.Row():
button = gr.Button(value="Run Benchmark", variant="primary")
with gr.Row():
with gr.Accordion(label="PyTorch Report", open=True, visible=True):
pytorch_report = gr.Markdown()
with gr.Accordion(label="OpenVINO Report", open=True, visible=True):
openvino_report = gr.Markdown()
model.submit(inputs=model, outputs=task, fn=update_task)
button.click(
fn=run_benchmark,
inputs={
task,
model,
openvino_model,
# backends,
*process_config.values(),
*inference_config.values(),
*pytorch_config.values(),
*openvino_config.values(),
},
outputs={
pytorch_report,
openvino_report,
},
concurrency_limit=1,
)
if __name__ == "__main__":
os.environ["LOG_TO_FILE"] = "0"
os.environ["LOG_LEVEL"] = "INFO"
setup_logging(level="INFO", prefix="MAIN-PROCESS")
demo.queue(max_size=10).launch()