Spaces:
Runtime error
Runtime error
File size: 3,582 Bytes
9bcdb59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import { dirtyLLMJsonParser } from "@/lib/dirtyLLMJsonParser"
import { dirtyCaptionCleaner } from "@/lib/dirtyCaptionCleaner"
import { predict } from "./predict"
import { Preset } from "../engine/presets"
import { LLMResponse } from "@/types"
import { cleanJson } from "@/lib/cleanJson"
import { createZephyrPrompt } from "@/lib/createZephyrPrompt"
export const getStoryContinuation = async ({
preset,
prompt = "",
nbTotalPanels = 2,
previousCaptions = [],
}: {
preset: Preset;
prompt: string;
nbTotalPanels: number;
previousCaptions: string[];
}): Promise<LLMResponse> => {
// throw new Error("Planned maintenance")
// In case you need to quickly debug the RENDERING engine you can uncomment this:
// return mockLLMResponse
const previousCaptionsTemplate = previousCaptions.length
? `To help you, here are the previous panels and their captions (note: if you see an anomaly here eg. no caption or the same description repeated multiple times, do not hesitate to fix the story): ${JSON.stringify(previousCaptions, null, 2)}`
: ''
const query = createZephyrPrompt([
{
role: "system",
content: [
`You are a writer specialized in ${preset.llmPrompt}`,
`Please write detailed drawing instructions and a short (2-3 sentences long) speech caption for the next ${nbTotalPanels} panels of a new story, but keep it open-ended (it will be continued and expanded later). Please make sure each of those ${nbTotalPanels} panels include info about character gender, age, origin, clothes, colors, location, lights, etc.`,
`Give your response as a VALID JSON array like this: \`Array<{ panel: number; instructions: string; caption: string}>\`.`,
// `Give your response as Markdown bullet points.`,
`Be brief in your ${nbTotalPanels} instructions and narrative captions, don't add your own comments. The captions must be captivating, smart, entertaining. Be straight to the point, and never reply things like "Sure, I can.." etc. Reply using valid JSON.`
].filter(item => item).join("\n")
},
{
role: "user",
content: `The story is about: ${prompt}.${previousCaptionsTemplate}`,
}
]) + "\n[{"
let result = ""
try {
// console.log(`calling predict(${query}, ${nbTotalPanels})`)
result = `${await predict(query, nbTotalPanels) || ""}`.trim()
if (!result.length) {
throw new Error("empty result!")
}
} catch (err) {
// console.log(`prediction of the story failed, trying again..`)
try {
result = `${await predict(query+".", nbTotalPanels) || ""}`.trim()
if (!result.length) {
throw new Error("empty result!")
}
} catch (err) {
console.error(`prediction of the story failed again 💩`)
throw new Error(`failed to generate the story ${err}`)
}
}
// console.log("Raw response from LLM:", result)
const tmp = cleanJson(result)
let llmResponse: LLMResponse = []
try {
llmResponse = dirtyLLMJsonParser(tmp)
} catch (err) {
// console.log(`failed to read LLM response: ${err}`)
// console.log(`original response was:`, result)
// in case of failure here, it might be because the LLM hallucinated a completely different response,
// such as markdown. There is no real solution.. but we can try a fallback:
llmResponse = (
tmp.split("*")
.map(item => item.trim())
.map((cap, i) => ({
panel: i,
caption: cap,
instructions: cap,
}))
)
}
return llmResponse.map(res => dirtyCaptionCleaner(res))
} |