ehristoforu's picture
Upload 6 files
7d311fc
raw
history blame
8.53 kB
import gradio as gr
from fetch import get_values
from dotenv import load_dotenv
load_dotenv()
import prodia
import requests
import random
from datetime import datetime
import os
prodia_key = os.getenv('PRODIA_X_KEY', None)
if prodia_key is None:
print("Please set PRODIA_X_KEY in .env, closing...")
exit()
client = prodia.Client(api_key=prodia_key)
def process_input_text2img(prompt, negative_prompt, steps, cfg_scale, number, seed, model, sampler, aspect_ratio, upscale, save=False):
images = []
for image in range(number):
result = client.txt2img(prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler,
steps=steps, cfg_scale=cfg_scale, seed=seed, aspect_ratio=aspect_ratio, upscale=upscale)
images.append(result.url)
if save:
date = datetime.now()
if not os.path.isdir(f'./outputs/{date.year}-{date.month}-{date.day}'):
os.mkdir(f'./outputs/{date.year}-{date.month}-{date.day}')
img_data = requests.get(result.url).content
with open(f"./outputs/{date.year}-{date.month}-{date.day}/{random.randint(1, 10000000000000)}_{result.seed}.png", "wb") as f:
f.write(img_data)
return images
def process_input_img2img(init, prompt, negative_prompt, steps, cfg_scale, number, seed, model, sampler, ds, upscale, save):
images = []
for image in range(number):
result = client.img2img(imageUrl=init, prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler,
steps=steps, cfg_scale=cfg_scale, seed=seed, denoising_strength=ds, upscale=upscale)
images.append(result.url)
if save:
date = datetime.now()
if not os.path.isdir(f'./outputs/{date.year}-{date.month}-{date.day}'):
os.mkdir(f'./outputs/{date.year}-{date.month}-{date.day}')
img_data = requests.get(result.url).content
with open(f"./outputs/{date.year}-{date.month}-{date.day}/{random.randint(1, 10000000000000)}_{result.seed}.png", "wb") as f:
f.write(img_data)
return images
"""
def process_input_control(init, prompt, negative_prompt, steps, cfg_scale, number, seed, model, control_model, sampler):
images = []
for image in range(number):
result = client.controlnet(imageUrl=init, prompt=prompt, negative_prompt=negative_prompt, model=model, sampler=sampler,
steps=steps, cfg_scale=cfg_scale, seed=seed, controlnet_model=control_model)
images.append(result.url)
return images
"""
theme = "Base"
with gr.Blocks(theme=theme) as demo:
gr.Markdown("""
# Stable Diffusion Demo
<h3></h3>
🚀 This space generates images by text with many settings!
⏰️ Generation on average lasts 15-25 seconds!
👥️️ This demo was created by OpenskyML and 4COM!
""")
gr.Image("banner.png", elem_id="banner-image", show_label=False, show_download_button=False, show_share_button=False)
gr.DuplicateButton(value="Duplicate space for private use")
with gr.Tab(label="txt2img"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="beautiful cat, 8k")
negative = gr.Textbox(label="Negative Prompt", lines=3, value="text, blurry, fuzziness", placeholder="Add words you don't want to show up in your art...")
with gr.Row():
steps = gr.Slider(label="Steps", value=30, step=1, maximum=50, minimum=5, interactive=True)
cfg = gr.Slider(label="CFG Scale", maximum=20, minimum=1, value=7, interactive=True, info="Recommended 7 CFG Scale")
with gr.Row():
num = gr.Slider(label="Number of images", value=2, step=1, maximum=4, minimum=1, interactive=True)
seed = gr.Slider(label="Seed", value=-1, step=1, minimum=-1, maximum=4294967295, interactive=True, info="""'-1' is a random seed""")
with gr.Row():
model = gr.Dropdown(label="Model", choices=get_values()[0], value="v1-5-pruned-emaonly.ckpt [81761151]", interactive=True)
sampler = gr.Dropdown(label="Sampler", choices=get_values()[1], value="DPM++ SDE Karras", interactive=True)
with gr.Row():
ar = gr.Radio(label="Aspect Ratio", choices=["square", "portrait", "landscape"], value="square", interactive=True)
with gr.Column():
upscale = gr.Checkbox(label="upscale", value=True, interactive=True, info="""'True' recommended, improves image quality""")
with gr.Row():
run_btn = gr.Button("Generate", variant="primary")
with gr.Column():
result_image = gr.Gallery(label="Result Image(s)")
gr.Examples(
examples=[
["A high tech solarpunk utopia in the Amazon rainforest"],
["A pikachu fine dining with a view to the Eiffel Tower"],
["A mecha robot in a favela in expressionist style"],
["an insect robot preparing a delicious meal"],
["A small cabin on top of a snowy mountain in the style of Disney, artstation"]
],
inputs=[prompt],
cache_examples=False,
)
run_btn.click(
process_input_text2img,
inputs=[
prompt,
negative,
steps,
cfg,
num,
seed,
model,
sampler,
ar,
upscale
],
outputs=[result_image],
)
with gr.Tab(label="img2img"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="beautiful cat, 8k")
with gr.Row():
negative = gr.Textbox(label="Negative Prompt", lines=3, placeholder="Add words you don't want to show up in your art...")
init_image = gr.Textbox(label="Init Image Url", lines=3, placeholder="https://cdn.openai.com/API/images/guides/image_generation_simple.webp")
with gr.Row():
steps = gr.Slider(label="Steps", value=30, step=1, maximum=50, minimum=1, interactive=True)
cfg = gr.Slider(label="CFG Scale", maximum=20, minimum=1, value=7, interactive=True, info="Recommended 7 CFG Scale")
with gr.Row():
num = gr.Slider(label="Number of images", value=2, step=1, maximum=4, minimum=1, interactive=True)
seed = gr.Slider(label="Seed", value=-1, step=1, minimum=-1, maximum=4294967295, interactive=True, info="""'-1' is a random seed""")
with gr.Row():
model = gr.Dropdown(label="Model", choices=get_values()[0], value="v1-5-pruned-emaonly.ckpt [81761151]", interactive=True)
sampler = gr.Dropdown(label="Sampler", choices=get_values()[1], value="DPM++ 2M Karras", interactive=True)
with gr.Row():
ds = gr.Slider(label="Denoising strength", maximum=0.9, minimum=0.1, value=0.5, interactive=True)
with gr.Column():
upscale = gr.Checkbox(label="upscale", value=True, interactive=True, info="""'True' recommended, improves image quality""")
with gr.Row():
run_btn = gr.Button("Generate", variant="primary")
with gr.Column():
result_image = gr.Gallery(label="Result Image(s)")
run_btn.click(
process_input_img2img,
inputs=[
init_image,
prompt,
negative,
steps,
cfg,
num,
seed,
model,
sampler,
ds,
upscale
],
outputs=[result_image],
)
with gr.Tab(label="Gallery"):
gr.load("nateraw/stable_diffusion_gallery", src="spaces")
with gr.Tab(label="License"):
gr.load("4com/4com-license", src="spaces")
if __name__ == "__main__":
demo.launch(show_api=True)