Spaces:
Runtime error
Runtime error
| import base64 | |
| import json | |
| import os | |
| import time | |
| import zipfile | |
| from pathlib import Path | |
| import re | |
| import uuid | |
| import pymupdf | |
| # ======================================================= | |
| # magic-pdf & MinerU ์ค์น ๊ด๋ จ (๊ธฐ์กด ์ฝ๋ ๊ทธ๋๋ก ์์) | |
| # ======================================================= | |
| os.system('pip uninstall -y magic-pdf') | |
| os.system('pip install git+https://github.com/opendatalab/MinerU.git@dev') | |
| os.system('wget https://github.com/opendatalab/MinerU/raw/dev/scripts/download_models_hf.py -O download_models_hf.py') | |
| os.system('python download_models_hf.py') | |
| with open('/home/user/magic-pdf.json', 'r') as file: | |
| data = json.load(file) | |
| data['device-mode'] = "cuda" | |
| if os.getenv('apikey'): | |
| data['llm-aided-config']['title_aided']['api_key'] = os.getenv('apikey') | |
| data['llm-aided-config']['title_aided']['enable'] = True | |
| with open('/home/user/magic-pdf.json', 'w') as file: | |
| json.dump(data, file, indent=4) | |
| os.system('cp -r paddleocr /home/user/.paddleocr') | |
| import gradio as gr | |
| from loguru import logger | |
| from magic_pdf.data.data_reader_writer import FileBasedDataReader | |
| from magic_pdf.libs.hash_utils import compute_sha256 | |
| from magic_pdf.tools.common import do_parse, prepare_env | |
| ########################################### | |
| # 1) UI ์คํ์ผ(CSS) + PDF์ฒ๋ฆฌ ๊ด๋ จ ํจ์๋ค | |
| ########################################### | |
| def create_css(): | |
| """ | |
| ํ๋ฉด์ ๊ฐ๋ ์ฑ์ฐ๊ณ ์คํฌ๋กค ๊ฐ๋ฅํ๋๋ก ์ค์ | |
| """ | |
| return """ | |
| .gradio-container { | |
| width: 100vw !important; | |
| min-height: 100vh !important; | |
| margin: 0 !important; | |
| padding: 0 !important; | |
| background: linear-gradient(135deg, #EFF6FF 0%, #F5F3FF 100%); | |
| display: flex; | |
| flex-direction: column; | |
| overflow-y: auto !important; | |
| } | |
| .title-area { | |
| text-align: center; | |
| margin: 1rem auto; | |
| padding: 1rem; | |
| background: white; | |
| border-radius: 1rem; | |
| box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); | |
| max-width: 800px; | |
| } | |
| .title-area h1 { | |
| background: linear-gradient(90deg, #2563EB 0%, #7C3AED 100%); | |
| -webkit-background-clip: text; | |
| -webkit-text-fill-color: transparent; | |
| font-size: 2.5rem; | |
| font-weight: bold; | |
| margin-bottom: 0.5rem; | |
| } | |
| .title-area p { | |
| color: #6B7280; | |
| font-size: 1.1rem; | |
| } | |
| .invisible { | |
| display: none !important; | |
| } | |
| .gr-block, .gr-box { | |
| padding: 0.5rem !important; | |
| } | |
| """ | |
| def read_fn(path): | |
| disk_rw = FileBasedDataReader(os.path.dirname(path)) | |
| return disk_rw.read(os.path.basename(path)) | |
| def parse_pdf(doc_path, output_dir, end_page_id, is_ocr, layout_mode, formula_enable, table_enable, language): | |
| os.makedirs(output_dir, exist_ok=True) | |
| try: | |
| file_name = f"{str(Path(doc_path).stem)}_{time.time()}" | |
| pdf_data = read_fn(doc_path) | |
| parse_method = "ocr" if is_ocr else "auto" | |
| local_image_dir, local_md_dir = prepare_env(output_dir, file_name, parse_method) | |
| do_parse( | |
| output_dir, | |
| file_name, | |
| pdf_data, | |
| [], | |
| parse_method, | |
| False, | |
| end_page_id=end_page_id, | |
| layout_model=layout_mode, | |
| formula_enable=formula_enable, | |
| table_enable=table_enable, | |
| lang=language, | |
| f_dump_orig_pdf=False | |
| ) | |
| return local_md_dir, file_name | |
| except Exception as e: | |
| logger.exception(e) | |
| def compress_directory_to_zip(directory_path, output_zip_path): | |
| try: | |
| with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
| for root, dirs, files in os.walk(directory_path): | |
| for file in files: | |
| file_path = os.path.join(root, file) | |
| arcname = os.path.relpath(file_path, directory_path) | |
| zipf.write(file_path, arcname) | |
| return 0 | |
| except Exception as e: | |
| logger.exception(e) | |
| return -1 | |
| def image_to_base64(image_path): | |
| with open(image_path, "rb") as image_file: | |
| return base64.b64encode(image_file.read()).decode('utf-8') | |
| def replace_image_with_base64(markdown_text, image_dir_path): | |
| pattern = r'\!\[(?:[^\]]*)\]\(([^)]+)\)' | |
| def replace(match): | |
| relative_path = match.group(1) | |
| full_path = os.path.join(image_dir_path, relative_path) | |
| base64_image = image_to_base64(full_path) | |
| return f"" | |
| return re.sub(pattern, replace, markdown_text) | |
| def to_pdf(file_path): | |
| with pymupdf.open(file_path) as f: | |
| if f.is_pdf: | |
| return file_path | |
| else: | |
| pdf_bytes = f.convert_to_pdf() | |
| unique_filename = f"{uuid.uuid4()}.pdf" | |
| tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename) | |
| with open(tmp_file_path, 'wb') as tmp_pdf_file: | |
| tmp_pdf_file.write(pdf_bytes) | |
| return tmp_file_path | |
| def to_markdown(file_path, end_pages, is_ocr, layout_mode, formula_enable, table_enable, language, progress=gr.Progress(track_tqdm=False)): | |
| """ | |
| - PDF ๋ณํ ๊ณผ์ ์์ 'progress(...)' ๋ก ์งํ๋ฅ ์ ๋ฐ์ดํธ | |
| - Gradio ๋ฒ์ ์ด ๋ฎ์๋ 'with progress:' ๋ฅผ ์ฐ์ง ์์ผ๋ฉด __enter__ ์ค๋ฅ๊ฐ ์๋ธ | |
| """ | |
| progress(0, "PDF๋ก ๋ณํ ์ค...") | |
| file_path = to_pdf(file_path) | |
| time.sleep(0.5) | |
| if end_pages > 20: | |
| end_pages = 20 | |
| progress(20, "๋ฌธ์ ํ์ฑ ์ค...") | |
| local_md_dir, file_name = parse_pdf(file_path, './output', end_pages - 1, is_ocr, | |
| layout_mode, formula_enable, table_enable, language) | |
| time.sleep(0.5) | |
| progress(50, "์์ถ(zip) ์์ฑ ์ค...") | |
| archive_zip_path = os.path.join("./output", compute_sha256(local_md_dir) + ".zip") | |
| zip_archive_success = compress_directory_to_zip(local_md_dir, archive_zip_path) | |
| if zip_archive_success == 0: | |
| logger.info("์์ถ ์ฑ๊ณต") | |
| else: | |
| logger.error("์์ถ ์คํจ") | |
| time.sleep(0.5) | |
| progress(70, "๋งํฌ๋ค์ด ๋ก๋ ์ค...") | |
| md_path = os.path.join(local_md_dir, file_name + ".md") | |
| with open(md_path, 'r', encoding='utf-8') as f: | |
| txt_content = f.read() | |
| time.sleep(0.5) | |
| progress(90, "์ด๋ฏธ์ง(base64) ๋ณํ ์ค...") | |
| md_content = replace_image_with_base64(txt_content, local_md_dir) | |
| time.sleep(0.5) | |
| progress(100, "๋ณํ ์๋ฃ!") | |
| return md_content | |
| ############################### | |
| # magic_pdf ๋ชจ๋ธ ์ด๊ธฐํ | |
| ############################### | |
| def init_model(): | |
| from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton | |
| try: | |
| model_manager = ModelSingleton() | |
| txt_model = model_manager.get_model(False, False) | |
| logger.info("txt_model init final") | |
| ocr_model = model_manager.get_model(True, False) | |
| logger.info("ocr_model init final") | |
| return 0 | |
| except Exception as e: | |
| logger.exception(e) | |
| return -1 | |
| model_init = init_model() | |
| logger.info(f"model_init: {model_init}") | |
| latin_lang = [ | |
| 'af','az','bs','cs','cy','da','de','es','et','fr','ga','hr','hu','id','is','it','ku', | |
| 'la','lt','lv','mi','ms','mt','nl','no','oc','pi','pl','pt','ro','rs_latin','sk','sl', | |
| 'sq','sv','sw','tl','tr','uz','vi','french','german' | |
| ] | |
| arabic_lang = ['ar','fa','ug','ur'] | |
| cyrillic_lang = ['ru','rs_cyrillic','be','bg','uk','mn','abq','ady','kbd','ava','dar','inh','che','lbe','lez','tab'] | |
| devanagari_lang = ['hi','mr','ne','bh','mai','ang','bho','mah','sck','new','gom','sa','bgc'] | |
| other_lang = ['ch','en','korean','japan','chinese_cht','ta','te','ka'] | |
| all_lang = ['', 'auto'] | |
| all_lang.extend([*other_lang, *latin_lang, *arabic_lang, *cyrillic_lang, *devanagari_lang]) | |
| ################################# | |
| # 2) Gemini (google.generativeai) | |
| ################################# | |
| import google.generativeai as genai | |
| from gradio import ChatMessage | |
| from typing import Iterator | |
| import time | |
| GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") | |
| genai.configure(api_key=GEMINI_API_KEY) | |
| model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-1219") | |
| def format_chat_history(messages: list) -> list: | |
| """ | |
| Gemini๊ฐ ์ดํดํ ์ ์๋ ํ์ (role, content) | |
| """ | |
| formatted_history = [] | |
| for message in messages: | |
| if not (message.role == "assistant" and hasattr(message, "metadata")): | |
| formatted_history.append({ | |
| "role": "user" if message.role == "user" else "assistant", | |
| "parts": [message.content] | |
| }) | |
| return formatted_history | |
| def stream_gemini_response(user_message: str, messages: list) -> Iterator[list]: | |
| """ | |
| Gemini ์๋ต ์คํธ๋ฆฌ๋ฐ: user_message๊ฐ ๋น์ด์์ผ๋ฉด ๊ธฐ๋ณธ ๋ฌธ๊ตฌ๋ก ๋์ฒด | |
| """ | |
| # ๋น ๋ฌธ์์ด์ด๋ฉด ๊ธฐ๋ณธ ๋ฌธ๊ตฌ๋ก ๊ต์ฒด(์ค๋ฅ ๋ฐฉ์ง) | |
| if not user_message.strip(): | |
| user_message = "โฆ(No content from user)โฆ" | |
| try: | |
| print(f"\n=== [Gemini] New Request ===\nUser message: '{user_message}'") | |
| chat_history = format_chat_history(messages) | |
| chat = model.start_chat(history=chat_history) | |
| response = chat.send_message(user_message, stream=True) | |
| thought_buffer = "" | |
| response_buffer = "" | |
| thinking_complete = False | |
| # "Thinking" ๋ฉ์์ง ์ถ๊ฐ | |
| messages.append( | |
| ChatMessage( | |
| role="assistant", | |
| content="", | |
| metadata={"title": "โ๏ธ Thinking: *The thoughts produced by the model are experimental"} | |
| ) | |
| ) | |
| yield convert_chat_messages_to_gradio_format(messages) | |
| for chunk in response: | |
| parts = chunk.candidates[0].content.parts | |
| current_chunk = parts[0].text | |
| if len(parts) == 2 and not thinking_complete: | |
| # Complete thought | |
| thought_buffer += current_chunk | |
| messages[-1] = ChatMessage( | |
| role="assistant", | |
| content=thought_buffer, | |
| metadata={"title": "โ๏ธ Thinking: *The thoughts produced by the model are experimental"} | |
| ) | |
| yield convert_chat_messages_to_gradio_format(messages) | |
| # Start final response | |
| response_buffer = parts[1].text | |
| messages.append(ChatMessage(role="assistant", content=response_buffer)) | |
| thinking_complete = True | |
| elif thinking_complete: | |
| # Response ongoing | |
| response_buffer += current_chunk | |
| messages[-1] = ChatMessage(role="assistant", content=response_buffer) | |
| else: | |
| # Still thinking | |
| thought_buffer += current_chunk | |
| messages[-1] = ChatMessage( | |
| role="assistant", | |
| content=thought_buffer, | |
| metadata={"title": "โ๏ธ Thinking: *The thoughts produced by the model are experimental"} | |
| ) | |
| yield convert_chat_messages_to_gradio_format(messages) | |
| print(f"\n=== [Gemini] Final Response ===\n{response_buffer}") | |
| except Exception as e: | |
| print(f"\n=== [Gemini] Error ===\n{str(e)}") | |
| messages.append(ChatMessage(role="assistant", content=f"I encountered an error: {str(e)}")) | |
| yield convert_chat_messages_to_gradio_format(messages) | |
| def convert_chat_messages_to_gradio_format(messages): | |
| """ | |
| ChatMessage list -> [ (์ ์ ๋ฐํ, ๋ด์๋ต), (...), ... ] | |
| """ | |
| gradio_chat = [] | |
| user_text, assistant_text = None, None | |
| for msg in messages: | |
| if msg.role == "user": | |
| # ์ด์ ํด ์ ์ฅ | |
| if user_text is not None or assistant_text is not None: | |
| gradio_chat.append((user_text or "", assistant_text or "")) | |
| user_text = msg.content | |
| assistant_text = None | |
| else: | |
| # assistant | |
| if user_text is None: | |
| user_text = "" | |
| if assistant_text is None: | |
| assistant_text = msg.content | |
| else: | |
| assistant_text += msg.content # ์คํธ๋ฆฌ๋ฐ ์ ๋์ | |
| # ๋ง์ง๋ง ํด | |
| if user_text is not None or assistant_text is not None: | |
| gradio_chat.append((user_text or "", assistant_text or "")) | |
| return gradio_chat | |
| def user_message(msg: str, history: list, doc_text: str) -> tuple[str, list]: | |
| """ | |
| doc_text(๋งํฌ๋ค์ด) ์ฐธ๊ณ ๋ฌธ๊ตฌ๋ฅผ ์๋ ์ฝ์ | |
| """ | |
| if doc_text.strip(): | |
| user_query = f"๋ค์ ๋ฌธ์๋ฅผ ์ฐธ๊ณ ํ์ฌ ๋ต๋ณ:\n\n{doc_text}\n\n์ง๋ฌธ: {msg}" | |
| else: | |
| user_query = msg | |
| history.append(ChatMessage(role="user", content=user_query)) | |
| return "", history | |
| ################################ | |
| # 3) ํตํฉ Gradio ์ฑ ๊ตฌ์ฑ & ์คํ | |
| ################################ | |
| with gr.Blocks(title="OCR FLEX + Gemini Chat", css=create_css()) as demo: | |
| gr.HTML(""" | |
| <div class="title-area"> | |
| <h1>OCR FLEX + Gemini Chat</h1> | |
| <p>PDF/์ด๋ฏธ์ง -> ํ ์คํธ(๋งํฌ๋ค์ด) ๋ณํ ํ, Gemini LLM ๋ํ</p> | |
| </div> | |
| """) | |
| md_state = gr.State("") | |
| chat_history = gr.State([]) | |
| with gr.Row(): | |
| file = gr.File(label="PDF/์ด๋ฏธ์ง ์ ๋ก๋", file_types=[".pdf", ".png", ".jpeg", ".jpg"], interactive=True) | |
| convert_btn = gr.Button("๋ณํํ๊ธฐ") | |
| # ์จ๊ธด ์ปดํฌ๋ํธ๋ค | |
| max_pages = gr.Slider(1, 20, 10, visible=False, elem_classes="invisible") | |
| layout_mode = gr.Dropdown(["layoutlmv3","doclayout_yolo"], value="doclayout_yolo", visible=False, elem_classes="invisible") | |
| language = gr.Dropdown(all_lang, value='auto', visible=False, elem_classes="invisible") | |
| formula_enable = gr.Checkbox(value=True, visible=False, elem_classes="invisible") | |
| is_ocr = gr.Checkbox(value=False, visible=False, elem_classes="invisible") | |
| table_enable = gr.Checkbox(value=True, visible=False, elem_classes="invisible") | |
| # ๋ณํ ํด๋ฆญ -> to_markdown (progress) | |
| convert_btn.click( | |
| fn=to_markdown, | |
| inputs=[file, max_pages, is_ocr, layout_mode, formula_enable, table_enable, language], | |
| outputs=md_state, | |
| show_progress=True # ํ๋ก๊ทธ๋ ์ค๋ฐ+๋ก๋ฉ ํ์ | |
| ) | |
| # Gemini Chat | |
| gr.Markdown("## Gemini 2.0 Flash (Thinking) Chat") | |
| chatbot = gr.Chatbot(height=600) | |
| with gr.Row(): | |
| chat_input = gr.Textbox(lines=1, placeholder="์ง๋ฌธ์ ์ ๋ ฅํ์ธ์...") | |
| clear_btn = gr.Button("๋ํ ์ด๊ธฐํ") | |
| # ํ๋กฌํํธ ์ ์ก -> user_message -> stream_gemini_response | |
| chat_input.submit( | |
| fn=user_message, | |
| inputs=[chat_input, chat_history, md_state], | |
| outputs=[chat_input, chat_history] | |
| ).then( | |
| fn=stream_gemini_response, | |
| inputs=[chat_input, chat_history], | |
| outputs=chatbot | |
| ) | |
| def clear_states(): | |
| return [], "" | |
| clear_btn.click( | |
| fn=clear_states, | |
| inputs=[], | |
| outputs=[chat_history, md_state] | |
| ).then( | |
| fn=lambda: [], | |
| inputs=[], | |
| outputs=chatbot | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860, debug=True) | |