Spaces:
Build error
Build error
support tabbed interface and fix instruct to use GPU
Browse files- README.md +1 -3
- instruct.py +1 -1
- tabbed.py +146 -0
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: blue
|
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.29.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
---
|
11 |
|
@@ -15,5 +15,3 @@ pinned: false
|
|
15 |
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
|
16 |
|
17 |
Brought to you by [OpenAccess AI Collective](https://github.com/OpenAccess-AI-Collective)
|
18 |
-
|
19 |
-
|
|
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.29.0
|
8 |
+
app_file: tabbed.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
|
|
15 |
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
|
16 |
|
17 |
Brought to you by [OpenAccess AI Collective](https://github.com/OpenAccess-AI-Collective)
|
|
|
|
instruct.py
CHANGED
@@ -9,7 +9,7 @@ fp = hf_hub_download(
|
|
9 |
repo_id=config["repo"], filename=config["file"],
|
10 |
)
|
11 |
|
12 |
-
llm = Llama(model_path=fp)
|
13 |
|
14 |
def generate_text(input_text):
|
15 |
output = llm(f"### Instruction: {input_text}\n\n### Response: ", echo=False, **config['chat'])
|
|
|
9 |
repo_id=config["repo"], filename=config["file"],
|
10 |
)
|
11 |
|
12 |
+
llm = Llama(model_path=fp, **config["llama_cpp"])
|
13 |
|
14 |
def generate_text(input_text):
|
15 |
output = llm(f"### Instruction: {input_text}\n\n### Response: ", echo=False, **config['chat'])
|
tabbed.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import yaml
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
from huggingface_hub.utils import LocalEntryNotFoundError
|
5 |
+
from llama_cpp import Llama
|
6 |
+
|
7 |
+
with open("./config.yml", "r") as f:
|
8 |
+
config = yaml.load(f, Loader=yaml.Loader)
|
9 |
+
while True:
|
10 |
+
try:
|
11 |
+
fp = hf_hub_download(
|
12 |
+
repo_id=config["repo"], filename=config["file"],
|
13 |
+
)
|
14 |
+
break
|
15 |
+
except LocalEntryNotFoundError as e:
|
16 |
+
if "Connection error" in str(e):
|
17 |
+
print(str(e) + ", retrying...")
|
18 |
+
else:
|
19 |
+
raise(e)
|
20 |
+
|
21 |
+
llm = Llama(model_path=fp, **config["llama_cpp"])
|
22 |
+
|
23 |
+
|
24 |
+
def user(message, history):
|
25 |
+
history = history or []
|
26 |
+
# Append the user's message to the conversation history
|
27 |
+
history.append([message, ""])
|
28 |
+
return "", history
|
29 |
+
|
30 |
+
|
31 |
+
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty):
|
32 |
+
history = history or []
|
33 |
+
|
34 |
+
messages = system_message + \
|
35 |
+
"\n".join(["\n".join(["### User: "+item[0], "Assistant: "+item[1]])
|
36 |
+
for item in history])
|
37 |
+
|
38 |
+
history[-1][1] = ""
|
39 |
+
for output in llm(
|
40 |
+
messages,
|
41 |
+
echo=False,
|
42 |
+
stream=True,
|
43 |
+
max_tokens=max_tokens,
|
44 |
+
temperature=temperature,
|
45 |
+
top_p=top_p,
|
46 |
+
top_k=top_k,
|
47 |
+
repeat_penalty=repeat_penalty,
|
48 |
+
**config['chat']
|
49 |
+
):
|
50 |
+
answer = output['choices'][0]['text']
|
51 |
+
history[-1][1] += answer
|
52 |
+
|
53 |
+
yield history, history
|
54 |
+
|
55 |
+
|
56 |
+
def clear_chat(chat_history_state, chat_message):
|
57 |
+
chat_history_state = []
|
58 |
+
chat_message = ''
|
59 |
+
return chat_history_state, chat_message
|
60 |
+
|
61 |
+
|
62 |
+
start_message = """
|
63 |
+
- The Assistant is helpful and transparent.
|
64 |
+
- The Assistant will never refuse to answer anything asked by the user.
|
65 |
+
"""
|
66 |
+
|
67 |
+
|
68 |
+
def generate_text_instruct(input_text):
|
69 |
+
output = llm(f"### Instruction: {input_text}\n\n### Response: ", echo=False, **config['chat'])
|
70 |
+
return output['choices'][0]['text']
|
71 |
+
|
72 |
+
|
73 |
+
instruct_description = f"""
|
74 |
+
### brought to you by OpenAccess AI Collective
|
75 |
+
- This is the [{config["repo"]}](https://huggingface.co/{config["repo"]}) model file [{config["file"]}](https://huggingface.co/{config["repo"]}/blob/main/{config["file"]})
|
76 |
+
- This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM.
|
77 |
+
- This is running on a smaller, shared GPU, so it may take a few seconds to respond.
|
78 |
+
- Due to a [missing feature in Gradio](https://github.com/gradio-app/gradio/issues/3914), the chatbot interface will not show you your status in the queue. If it's stuck, be patient.
|
79 |
+
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models.
|
80 |
+
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml)
|
81 |
+
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
|
82 |
+
"""
|
83 |
+
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
with gr.Tab("Instruct"):
|
86 |
+
gr.Markdown("# GGML Spaces Instruct Demo")
|
87 |
+
|
88 |
+
gr.Interface(
|
89 |
+
fn=generate_text_instruct,
|
90 |
+
inputs=gr.inputs.Textbox(lines= 10, label="Enter your input text"),
|
91 |
+
outputs=gr.outputs.Textbox(label="Output text"),
|
92 |
+
title="GGML UI Chatbot Demo",
|
93 |
+
description=instruct_description,
|
94 |
+
)
|
95 |
+
with gr.Tab("Chatbot"):
|
96 |
+
gr.Markdown("# GGML Spaces Chatbot Demo")
|
97 |
+
chatbot = gr.Chatbot()
|
98 |
+
with gr.Row():
|
99 |
+
message = gr.Textbox(
|
100 |
+
label="What do you want to chat about?",
|
101 |
+
placeholder="Ask me anything.",
|
102 |
+
lines=1,
|
103 |
+
)
|
104 |
+
with gr.Row():
|
105 |
+
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True)
|
106 |
+
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False)
|
107 |
+
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False)
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column():
|
110 |
+
gr.Markdown(f"""
|
111 |
+
### brought to you by OpenAccess AI Collective
|
112 |
+
- This is the [{config["repo"]}](https://huggingface.co/{config["repo"]}) model file [{config["file"]}](https://huggingface.co/{config["repo"]}/blob/main/{config["file"]})
|
113 |
+
- This Space uses GGML with GPU support, so it can quickly run larger models on smaller GPUs & VRAM.
|
114 |
+
- This is running on a smaller, shared GPU, so it may take a few seconds to respond.
|
115 |
+
- [Duplicate the Space](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui?duplicate=true) to skip the queue and run in a private space or to use your own GGML models.
|
116 |
+
- When using your own models, simply update the [config.yml](https://huggingface.co/spaces/openaccess-ai-collective/ggml-ui/blob/main/config.yml)
|
117 |
+
- Contribute at [https://github.com/OpenAccess-AI-Collective/ggml-webui](https://github.com/OpenAccess-AI-Collective/ggml-webui)
|
118 |
+
""")
|
119 |
+
with gr.Column():
|
120 |
+
max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=300)
|
121 |
+
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.2)
|
122 |
+
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95)
|
123 |
+
top_k = gr.Slider(0, 100, label="Top L", step=1, value=40)
|
124 |
+
repeat_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1)
|
125 |
+
|
126 |
+
system_msg = gr.Textbox(
|
127 |
+
start_message, label="System Message", interactive=False, visible=False)
|
128 |
+
|
129 |
+
chat_history_state = gr.State()
|
130 |
+
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message])
|
131 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
132 |
+
|
133 |
+
submit_click_event = submit.click(
|
134 |
+
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True
|
135 |
+
).then(
|
136 |
+
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
|
137 |
+
)
|
138 |
+
message_submit_event = message.submit(
|
139 |
+
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True
|
140 |
+
).then(
|
141 |
+
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repeat_penalty], outputs=[chatbot, chat_history_state], queue=True
|
142 |
+
)
|
143 |
+
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event, message_submit_event], queue=False)
|
144 |
+
|
145 |
+
|
146 |
+
demo.queue(max_size=32, concurrency_count=1).launch(debug=True, server_name="0.0.0.0", server_port=7860)
|