File size: 18,337 Bytes
de86128
 
 
 
 
46c15e8
 
de86128
46c15e8
de86128
 
 
 
 
46c15e8
de86128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c15e8
 
 
 
 
 
 
 
 
 
 
 
 
de86128
 
 
46c15e8
de86128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c15e8
de86128
46c15e8
de86128
 
 
 
 
 
 
 
 
 
 
 
46c15e8
 
de86128
 
 
 
 
 
 
 
 
 
46c15e8
 
de86128
 
46c15e8
de86128
 
 
 
 
 
 
 
 
 
 
 
46c15e8
de86128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c15e8
de86128
 
 
 
 
 
 
 
46c15e8
 
 
 
 
 
de86128
 
 
46c15e8
de86128
 
 
 
 
 
46c15e8
de86128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c15e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de86128
46c15e8
de86128
 
 
 
 
46c15e8
 
de86128
46c15e8
 
 
 
 
 
 
de86128
46c15e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de86128
46c15e8
de86128
 
46c15e8
 
de86128
46c15e8
 
de86128
46c15e8
 
 
 
 
 
 
 
 
de86128
46c15e8
 
 
 
 
 
 
de86128
46c15e8
 
de86128
46c15e8
 
de86128
46c15e8
 
 
 
 
 
 
 
de86128
 
46c15e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de86128
 
46c15e8
 
 
 
 
 
de86128
46c15e8
 
 
 
 
 
 
 
 
 
 
 
 
 
de86128
46c15e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de86128
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import streamlit as st
import pandas as pd
from datasets import load_dataset
from ast import literal_eval
import altair as alt
import plotly.graph_objs as go
import matplotlib.pyplot as plt

nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering",
             "translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering"
]
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"]
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"]
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"]
tabular = ["tabular-classification", "tabular-regression"]

modalities = {
    "nlp": nlp_tasks,
    "audio": audio_tasks,
    "cv": cv_tasks,
    "multimodal": multimodal,
    "tabular": tabular,
    "rl": ["reinforcement-learning"]
}

def modality(row):
  pipeline = row["pipeline"]
  for modality, tasks in modalities.items():
    if pipeline in tasks:
      return modality
  if type(pipeline) == "str":
    return "unk_modality"
  return None

supported_revisions = ["27_09_22"]

def process_dataset(version):
    # Load dataset at specified revision
    dataset = load_dataset("open-source-metrics/model-repos-stats", revision=version)

    # Convert to pandas dataframe
    data = dataset["train"].to_pandas()

    # Add modality column
    data["modality"] = data.apply(modality, axis=1)

    # Bin the model card length into some bins
    data["length_bins"] = pd.cut(data["text_length"], [0, 200, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 20000, 50000])

    return data

base = st.selectbox(
    'What revision do you want to use',
    supported_revisions)
data = process_dataset(base)

def eval_tags(row):
    tags = row["tags"]
    if tags == "none" or tags == [] or tags == "{}":
        return []
    if tags[0] != "[":
        tags = str([tags])
    val = literal_eval(tags)
    if isinstance(val, dict):
        return []
    return val

data["tags"] = data.apply(eval_tags, axis=1)

total_samples = data.shape[0]
st.metric(label="Total models", value=total_samples)

tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users", "Raw Data"])

with tab1:
    st.header("Languages info")

    data.loc[data.languages == "False", 'languages'] = None
    data.loc[data.languages == {}, 'languages'] = None

    no_lang_count = data["languages"].isna().sum()
    data["languages"] = data["languages"].fillna('none')

    def make_list(row):
        languages = row["languages"]
        if languages == "none":
            return []
        return literal_eval(languages)

    def language_count(row):
        languages = row["languages"]
        leng = len(languages)
        return leng

    data["languages"] = data.apply(make_list, axis=1)
    data["language_count"] = data.apply(language_count, axis=1)

    models_with_langs = data[data["language_count"] > 0]
    langs = models_with_langs["languages"].explode()
    langs = langs[langs != {}]
    total_langs = len(langs.unique())

    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric(label="Language Specified", value=total_samples-no_lang_count)
    with col2:
        st.metric(label="No Language Specified", value=no_lang_count)
    with col3:
        st.metric(label="Total Unique Languages", value=total_langs)

    st.subheader("Count of languages per model repo")
    st.text("Some repos are for multiple languages, so the count is greater than 1")
    linguality = st.selectbox(
        'All or just Multilingual',
        ["All", "Just Multilingual", "Three or more languages"])

    filter = 0
    if linguality == "Just Multilingual":
        filter = 1
    elif linguality == "Three or more languages":
        filter = 2

    models_with_langs = data[data["language_count"] > filter]
    df1 = models_with_langs['language_count'].value_counts()
    st.bar_chart(df1)

    st.subheader("Most frequent languages")
    linguality_2 = st.selectbox(
        'All or filtered',
        ["All", "No English", "Remove top 10"])

    filter = 0
    if linguality_2 == "All":
        filter = 0
    elif linguality_2 == "No English":
        filter = 1
    else:
        filter = 2

    models_with_langs = data[data["language_count"] > 0]
    langs = models_with_langs["languages"].explode()
    langs = langs[langs != {}]

    d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
    if filter == 1:
        d = d.iloc[1:]
    elif filter == 2:
        d = d.iloc[10:]

    # Just keep top 25 to avoid vertical scroll
    d = d.iloc[:25]

    st.write(alt.Chart(d).mark_bar().encode(
        x='counts',
        y=alt.X('language', sort=None)
    ))

    st.subheader("Raw Data")
    col1, col2 = st.columns(2)
    with col1:
        st.dataframe(df1)
    with col2:
        d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
        st.dataframe(d)
    
    

with tab2:
    st.header("License info")

    no_license_count = data["license"].isna().sum()
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric(label="License Specified", value=total_samples-no_license_count)
    with col2:
        st.metric(label="No license Specified", value=no_license_count)
    with col3:
        st.metric(label="Total Unique Licenses", value=len(data["license"].unique()))

    st.subheader("Distribution of licenses per model repo")
    license_filter = st.selectbox(
        'All or filtered',
        ["All", "No Apache 2.0", "Remove top 10"])

    filter = 0
    if license_filter == "All":
        filter = 0
    elif license_filter == "No Apache 2.0":
        filter = 1
    else:
        filter = 2

    d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
    if filter == 1:
        d = d.iloc[1:]
    elif filter == 2:
        d = d.iloc[10:]

    # Just keep top 25 to avoid vertical scroll
    d = d.iloc[:25]

    st.write(alt.Chart(d).mark_bar().encode(
        x='counts',
        y=alt.X('license', sort=None)
    ))
    st.text("There are some edge cases, as old repos using lists of licenses.")

    st.subheader("Raw Data")
    d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
    st.dataframe(d)
    
with tab3:
    st.header("Pipeline info")

    tags = data["tags"].explode()
    tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
    s = tags["tag"]
    s = s[s.apply(type) == str]
    unique_tags = len(s.unique())

    no_pipeline_count = data["pipeline"].isna().sum()
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric(label="# models that have any pipeline", value=total_samples-no_pipeline_count)
    with col2:
        st.metric(label="No pipeline Specified", value=no_pipeline_count)
    with col3:
        st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique()))

    pipeline_filter = st.selectbox(
        'Modalities',
        ["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])

    filter = 0
    if pipeline_filter == "All":
        filter = 0
    elif pipeline_filter == "NLP":
        filter = 1
    elif pipeline_filter == "CV":
        filter = 2
    elif pipeline_filter == "Audio":
        filter = 3
    elif pipeline_filter == "RL":
        filter = 4
    elif pipeline_filter == "Multimodal":
        filter = 5
    elif pipeline_filter == "Tabular":
        filter = 6

    st.subheader("High-level metrics")
    filtered_data = data[data['pipeline'].notna()]

    if filter == 1:
        filtered_data = data[data["modality"] == "nlp"]
    elif filter == 2:
        filtered_data = data[data["modality"] == "cv"]
    elif filter == 3:
        filtered_data = data[data["modality"] == "audio"]
    elif filter == 4:
        filtered_data = data[data["modality"] == "rl"]
    elif filter == 5:
        filtered_data = data[data["modality"] == "multimodal"]
    elif filter == 6:
        filtered_data = data[data["modality"] == "tabular"]

    col1, col2, col3 = st.columns(3)
    with col1:
        p = st.selectbox(
            'What pipeline do you want to see?',
            ["all", *filtered_data["pipeline"].unique()]
        )
    with col2:
        l = st.selectbox(
            'What library do you want to see?',
            ["all", *filtered_data["library"].unique()]
        )
    with col3:
        f = st.selectbox(
            'What framework support? (transformers)',
            ["all", "py", "tf", "jax"]
        ) 

    col1, col2 = st.columns(2)
    with col1:
        filt = st.multiselect(
            label="Tags (All by default)",
            options=s.unique(),
            default=None)
    with col2:
        o = st.selectbox(
            label="Operation (for tags)",
            options=["Any", "All", "None"]
        )

    def filter_fn(row):
        tags = row["tags"]
        tags[:] = [d for d in tags if isinstance(d, str)]
        if o == "All":
            if all(elem in tags for elem in filt):
                return True

        s1 = set(tags)
        s2 = set(filt)
        if o == "Any":
            if bool(s1 & s2):
                return True
        if o == "None":
            if len(s1.intersection(s2)) == 0:
                return True
        return False

    
    if p != "all":
        filtered_data = filtered_data[filtered_data["pipeline"] == p]
    if l != "all":
        filtered_data = filtered_data[filtered_data["library"] == l]
    if f != "all":
        if f == "py":
            filtered_data = filtered_data[filtered_data["pytorch"] == 1]
        elif f == "tf":
            filtered_data = filtered_data[filtered_data["tensorflow"] == 1]
        elif f == "jax":
            filtered_data = filtered_data[filtered_data["jax"] == 1]
    if filt != []:
        filtered_data = filtered_data[filtered_data.apply(filter_fn, axis=1)]


    d = filtered_data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
    columns_of_interest = ["downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
    grouped_data = filtered_data.groupby("pipeline").sum()[columns_of_interest]
    final_data = pd.merge(
        d, grouped_data, how="outer", on="pipeline"
    )
    sums = grouped_data.sum()

    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric(label="Total models", value=filtered_data.shape[0])
    with col2:
        st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
    with col3:
        st.metric(label="Cumulative likes", value=sums["likes"])

    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric(label="Total in PT", value=sums["pytorch"])
    with col2:
        st.metric(label="Total in TF", value=sums["tensorflow"])
    with col3:
        st.metric(label="Total in JAX", value=sums["jax"])
    
    st.metric(label="Unique Tags", value=unique_tags)

    

    st.subheader("Count of models per pipeline")
    st.write(alt.Chart(d).mark_bar().encode(
        x='counts',
        y=alt.X('pipeline', sort=None)
    ))

    st.subheader("Aggregated data")
    st.dataframe(final_data)

    st.subheader("Most common model types (specific to transformers")
    d = filtered_data["model_type"].value_counts().rename_axis("model_type").to_frame('counts').reset_index()
    d = d.iloc[:15]
    st.write(alt.Chart(d).mark_bar().encode(
        x='counts',
        y=alt.X('model_type', sort=None)
    ))

    st.subheader("Most common library types (Learn more in library tab)")
    d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
    st.write(alt.Chart(d).mark_bar().encode(
        x='counts',
        y=alt.X('library', sort=None)
    ))
    
    st.subheader("Tags by count")
    tags = filtered_data["tags"].explode()
    tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
    st.write(alt.Chart(tags.head(30)).mark_bar().encode(
        x='counts',
        y=alt.X('tag', sort=None)
    ))
    
    st.subheader("Raw Data")
    columns_of_interest = [
        "repo_id", "author", "model_type", "files_per_repo", "library",
        "downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
    raw_data = filtered_data[columns_of_interest]
    st.dataframe(raw_data)
    
    

    # todo : add activity metric


with tab4:
    st.header("Discussions Tab info")

    columns_of_interest = ["prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]
    sums = data[columns_of_interest].sum()

    col1, col2, col3, col4 = st.columns(4)
    with col1:
        st.metric(label="Total PRs", value=sums["prs_count"])
    with col2:
        st.metric(label="PRs opened", value=sums["prs_open"])
    with col3:
        st.metric(label="PRs merged", value=sums["prs_merged"])
    with col4:
        st.metric(label="PRs closed", value=sums["prs_closed"])

    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric(label="Total discussions", value=sums["discussions_count"])
    with col2:
        st.metric(label="Discussions open", value=sums["discussions_open"])
    with col3:
        st.metric(label="Discussions closed", value=sums["discussions_closed"])

    filtered_data = data[["repo_id", "prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]].sort_values("prs_count", ascending=False).reset_index(drop=True)
    st.dataframe(filtered_data)

with tab5:
    st.header("Library info")

    no_library_count = data["library"].isna().sum()
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric(label="# models that have any library", value=total_samples-no_library_count)
    with col2:
        st.metric(label="No library Specified", value=no_library_count)
    with col3:
        st.metric(label="Total Unique library", value=len(data["library"].unique()))


    st.subheader("High-level metrics")
    filtered_data = data[data['library'].notna()]

    col1, col2 = st.columns(2)
    with col1:
        lib = st.selectbox(
            'What library do you want to see? ',
            ["all", *filtered_data["library"].unique()]
        )
    with col2:
        pip = st.selectbox(
            'What pipeline do you want to see? ',
            ["all", *filtered_data["pipeline"].unique()]
        )

    if pip != "all":
        filtered_data = filtered_data[filtered_data["pipeline"] == pip]
    if lib != "all":
        filtered_data = filtered_data[filtered_data["library"] == lib]


    d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index()
    grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]]
    final_data = pd.merge(
        d, grouped_data, how="outer", on="library"
    )
    sums = grouped_data.sum()

    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric(label="Total models", value=filtered_data.shape[0])
    with col2:
        st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
    with col3:
        st.metric(label="Cumulative likes", value=sums["likes"])

    st.subheader("Most common library types (Learn more in library tab)")
    d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
    st.write(alt.Chart(d).mark_bar().encode(
        x='counts',
        y=alt.X('library', sort=None)
    ))

    

    st.subheader("Aggregated Data")
    st.dataframe(final_data)
    
    st.subheader("Raw Data")
    columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"]
    filtered_data = filtered_data[columns_of_interest]
    st.dataframe(filtered_data)

with tab6:
    st.header("Model cards")

    columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"]
    rows = data.shape[0]

    cond = data["has_model_index"] | data["has_text"]
    with_model_card = data[cond]
    c_model_card = with_model_card.shape[0]
    st.subheader("High-level metrics")
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric(label="# models with model card file", value=c_model_card)
    with col2:
        st.metric(label="# models without model card file", value=rows-c_model_card)
    
    with_index = data["has_model_index"].sum()
    with col1:
        st.metric(label="# models with model index", value=with_index)
    with col2:
        st.metric(label="# models without model index", value=rows-with_index)

    with_text = data["has_text"]
    with col1:
        st.metric(label="# models with model card text", value=with_text.sum())
    with col2:
        st.metric(label="# models without model card text", value=rows-with_text.sum())

    
    st.subheader("Length (chars) of model card content")
    fig, ax = plt.subplots() 
    ax = data["length_bins"].value_counts().plot.bar()
    st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean())
    st.pyplot(fig)

    st.subheader("Tags (Read more in Pipeline tab)")
    tags = data["tags"].explode()
    tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
    st.write(alt.Chart(tags.head(30)).mark_bar().encode(
        x='counts',
        y=alt.X('tag', sort=None)
    ))

with tab7:
    st.header("Authors")
    st.text("This info corresponds to the repos owned by the authors")
    authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0", "language_count"], axis=1).sort_values("downloads_30d", ascending=False)
    d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index()
    final_data = pd.merge(
        d, authors, how="outer", on="author"
    )
    st.dataframe(final_data)

with tab8:
    st.header("Raw Data")
    d = data.astype(str)
    st.dataframe(d)