Chris-lab / pages /arena.py
kz209
update
80a8eaa
import random
import gradio as gr
import json
from utils.data import dataset
from utils.multiple_stream import stream_data
from pages.summarization_playground import get_model_batch_generation
from pages.summarization_playground import custom_css
def random_data_selection():
datapoint = random.choice(dataset)
datapoint = datapoint['section_text'] + '\n\nDialogue:\n' + datapoint['dialogue']
return datapoint
def create_arena():
with open("prompt/prompt.json", "r") as file:
json_data = file.read()
prompts = json.loads(json_data)
with gr.Blocks(css=custom_css) as demo:
with gr.Group():
datapoint = random_data_selection()
gr.Markdown("""This arena is designed to compare different prompts. Click the button to stream responses from randomly shuffled prompts. Each column represents a response generated from one randomly selected prompt.
Once the streaming is complete, you can choose the best response.\u2764\ufe0f""")
data_textbox = gr.Textbox(label="Data", lines=10, placeholder="Datapoints to test...", value=datapoint)
with gr.Row():
random_selection_button = gr.Button("Change Data")
stream_button = gr.Button("✨ Click to Streaming ✨")
random_selection_button.click(
fn=random_data_selection,
inputs=[],
outputs=[data_textbox]
)
random.shuffle(prompts)
random_selected_prompts = prompts[:3]
# Store prompts in state components
state_prompts = gr.State(value=prompts)
state_random_selected_prompts = gr.State(value=random_selected_prompts)
with gr.Row():
columns = [gr.Textbox(label=f"Prompt {i+1}", lines=10) for i in range(len(random_selected_prompts))]
model = get_model_batch_generation("Qwen/Qwen2-1.5B-Instruct")
def start_streaming(data, random_selected_prompts):
content_list = [prompt['prompt'] + '\n{' + data + '}\n\nsummary:' for prompt in random_selected_prompts]
for response_data in stream_data(content_list, model):
updates = [gr.update(value=response_data[i]) for i in range(len(columns))]
yield tuple(updates)
stream_button.click(
fn=start_streaming,
inputs=[data_textbox, state_random_selected_prompts],
outputs=columns,
show_progress=False
)
choice = gr.Radio(label="Choose the best response:", choices=["Response 1", "Response 2", "Response 3"])
submit_button = gr.Button("Submit")
output = gr.Textbox(label="You selected:", visible=False)
def update_prompt_metrics(selected_choice, prompts, random_selected_prompts):
if selected_choice == "Response 1":
prompt_id = random_selected_prompts[0]['id']
elif selected_choice == "Response 2":
prompt_id = random_selected_prompts[1]['id']
elif selected_choice == "Response 3":
prompt_id = random_selected_prompts[2]['id']
else:
raise ValueError(f"No corresponding response of {selected_choice}")
for prompt in prompts:
if prompt['id'] == prompt_id:
prompt["metric"]["winning_number"] += 1
break
else:
raise ValueError(f"No prompt of id {prompt_id}")
with open("prompt/prompt.json", "w") as f:
json.dump(prompts, f)
return gr.update(value=f"You selected: {selected_choice}", visible=True), gr.update(interactive=False), gr.update(interactive=False)
submit_button.click(
fn=update_prompt_metrics,
inputs=[choice, state_prompts, state_random_selected_prompts],
outputs=[output, choice, submit_button],
)
return demo
if __name__ == "__main__":
demo = create_arena()
demo.queue()
demo.launch()